0
Technical Briefs

Postgrowth Microwave Treatment to Align Carbon Nanotubes

[+] Author and Article Information
A. Sharma

George W. Woodruff
School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

B. A. Cola

e-mail: cola@gatech.edu
George W. Woodruff
School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332;
School of Materials Science and Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF Micro AND Nano-Manufacturing. Manuscript received September 3, 2012; final manuscript received November 26, 2012; published online March 22, 2013. Assoc. Editor: Ashutosh Sharma.

J. Micro Nano-Manuf 1(1), 014501 (Mar 22, 2013) (6 pages) Paper No: JMNM-12-1052; doi: 10.1115/1.4023162 History: Received September 03, 2012; Revised November 26, 2012

We show that a commercial microwave oven can be used after growth to increase alignment of carbon nanotubes (CNTs) and reduce their resistance as thermal and electrical interface materials. Forests of multiwall CNTs were grown directly on both sides of aluminum foils by thermal chemical vapor deposition (CVD) and subsequently exposed to a microwave treatment in air. Scanning electron micrographs revealed enhanced vertical alignment of CNTs after postgrowth microwave treatment. The microwave treatment creates an electric field near the CNT growth substrate that aligns the CNTs orthogonally to the growth substrate. Microwaved CNT forests produced increased mechanical stiffness by approximately 58%, and reduced thermal and electrical contact resistances by 44% and 41%, respectively, compared to as-grown forests. These performance changes are attributed to an increase in the real contact area established at the CNT distal ends because of the enhanced forest alignment. This conclusion is consistent with several prior observations in the literature. This work demonstrates a facile method to enhance the alignment of CNTs grown by thermal CVD without the use of in situ plasma or electric field application.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Terrones, M., 2003, “Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes,” Annu. Rev. Mater. Res., 33, pp. 419–501. [CrossRef]
Berger, C., Yi, Y., Wang, Z. L., and de Heer, W. A., 2002, “Multiwalled Carbon Nanotubes are Ballistic Conductors at Room Temperature,” Appl. Phys. A, 74(3), pp. 363–365. [CrossRef]
Pop, E., Mann, D., Wang, Q., Goodson, K. E., and Dai, H. J., 2006, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature,” Nano Lett., 6(1), pp. 96–100. [CrossRef] [PubMed]
Berber, S., Kwon, Y. K., and Tomanek, D., 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84(20), pp. 4613–4616. [CrossRef] [PubMed]
Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N., and Ajayan, P. M., 2005, “Super-Compressible Foamlike Carbon Nanotube Films,” Science, 310(5752), pp. 1307–1310. [CrossRef] [PubMed]
Pathak, S., Lim, E. J., Pour Shahid Saeed Abadi, P., Graham, S., Cola, B. A., and Greer, J. R., 2012, “Higher Recovery and Better Energy Dissipation at Faster Strain Rates in Carbon Nanotube Bundles: An In-Situ Study,” ACS Nano, 6(3), pp. 2189–2197. [CrossRef] [PubMed]
Pour Shahid Saeed Abadi, P., Hutchens, S. B., Greer, J. R., Cola, B. A., and Graham, S., 2012, “Effects of Morphology on the Micro-Compression Response of Carbon Nanotube Forests,” Nanoscale, 4(11), pp. 3373–3380. [CrossRef] [PubMed]
Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A., 2008, “Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays,” Nano Lett., 8(2), pp. 511–515. [CrossRef] [PubMed]
Cola, B. A., 2010, “Carbon Nanotubes as High Performance Thermal Interface Materials,” Electron. Cooling Mag., 16(1), pp. 10–15. Available at: http://www.electronics-cooling.com/2010/04/carbon-nanotubes-as-high-performance-thermal-interface-materials/
Pour Shahid Saeed Abadi, P., Leong, C. K., and Chung, D. D. L., 2009, “Factors That Govern the Performance of Thermal Interface Materials,” J. Electron. Mater., 38(1), pp. 175–192. [CrossRef]
Pour Shahid Saeed Abadi, P., and Chung, D. D. L., 2011, “Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets,” J. Electron. Mater., 40(7), pp. 1490–1500. [CrossRef]
Cola, B. A., Xu, J., and Fisher, T. S., 2009, “Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces,” Int. J. Heat Mass Transfer, 52, pp. 3490–3503. [CrossRef]
Xu, J., and Fisher, T. S., 2006, “Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays,” Int. J. Heat Mass Transfer, 49(9–10), pp. 1658–1666. [CrossRef]
Xu, J., and Fisher, T. S., 2006, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces,” IEEE Trans. Compon. Packag. Technol., 29(2), pp. 261–267. [CrossRef]
Park, M., Cola, B. A., Siegmund, T., and Xu, J., 2006, “Effects of a Carbon Nanotube Layer on Electrical Contact Resistance Between Copper Substrates,” Nanotechnology, 17, pp. 2294–2303. [CrossRef]
Amama, P. B., Cola, B. A., Sands, T. D., and Xu, X., 2007, “Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance,” Nanotechnology, 18, p. 385303. [CrossRef]
Cola, B. A., Amama, P. B., Xu, X., and Fisher, T. S., 2008, “Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces,” ASME J. Heat Transfer, 130, p. 114503. [CrossRef]
Cola, B. A., Xu, J., Cheng, C., Xu, X., and Fisher, T. S., 2007, “Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” J. Appl. Phys., 101, p. 054313. [CrossRef]
Cola, B. A., Xu, X., and Fisher, T. S., 2007, “Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material,” Appl. Phys. Lett., 90, p. 093513. [CrossRef]
Tong, T., Zhao, Y., Delzeit, L., and Kashani, A., 2007, “Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials,” IEEE Trans. Compon. Packag. Technol., 30(1), pp. 92–100. [CrossRef]
Zhang, K., Chai, Y., Yuen, M. M. F., Xiao, D. G. W., and Chan, P. C. H., 2008, “Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling,” Nanotechnology, 19, p. 215706. [CrossRef] [PubMed]
Panzer, M. A., Zhang, G., Mann, D., Hu, X., and Pop, E., 2008, “Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays,” ASME J. Heat Transfer, 130, p. 052401. [CrossRef]
Sample, J. L., Rebello, K. J., Saffarian, H., and Osiander, R., “Carbon Nanotube Coating for Thermal Control,” Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 297–301.
Ngo, Q., Gurden, B. A., Cassell, A. M., Walker, M. D., Ye, Q., Koehne, J. E., Meyyappan, M., Li, J., and Yang, C. Y., “Thermal Conductivity of Carbon Nanotube Composite Films,” Proceedings of the Material Research Society Symposium, pp. F3.18.11–F13.18.16.
Huxtable, S., Cahill, D., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M., Siddons, G., Shim, M., and Keblinski, P., 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nat. Mater., 2(11), pp. 731–734. [CrossRef] [PubMed]
Marconnet, A. M., Yamamoto, N., Panzer, M. A., Wardle, B. L., and Goodson, K. E., 2011, “Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density,” ACS Nano, 5(6), pp. 4818–4825. [CrossRef] [PubMed]
Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., 1999, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283(5401), pp. 512–514. [CrossRef] [PubMed]
Maschmann, M. R., Amama, P. B., Goyal, A., Iqbal, Z., and Fisher, T. S., 2006, “Freestanding Vertically Oriented Single-Walled Carbon Nanotubes Synthesized Using Microwave Plasma Enhanced CVD,” Carbon, 44(13), pp. 2758–2763. [CrossRef]
Senthil Kumar, M., Lee, S. H., Kim, T. Y., Kim, T. H., Song, S. M., Yang, J. W., Nahm, K. S., and Suh, E. K., 2003, “DC Electric Field Assisted Alignment of Carbon Nanotubes on Metal Electrodes,” Solid-State Electron., 47(11), pp. 2075–2080. [CrossRef]
Ural, A., Li, Y., and Dai, H., 2002, “Electric-Field-Aligned Growth of Single-Walled Carbon Nanotubes on Surfaces,” Appl. Phys. Lett., 81(18), pp. 3464–3466. [CrossRef]
Chen, X. Q., Saito, T., Yamada, H., and Matsushige, K., 2001, “Aligning Single-Wall Carbon Nanotubes With an Alternating-Current Electric Field,” Appl. Phys. Lett., 78(23), pp. 3714–3716. [CrossRef]
Bower, C., Zhu, W., Jin, S., and Zhou, O., 2000, “Plasma-Induced Alignment of Carbon Nanotubes,” Appl. Phys. Lett., 77(6), pp. 830–832. [CrossRef]
Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A., 2006, “Interfacial Energy and Strength of Multiwalled-Carbon-Nanotube-Based Dry Adhesive,” J. Vac. Sci. Technol. B, 24(1), pp. 331–335. [CrossRef]
Lepró, X., Lima, M. D., and Baughman, R. H., 2010, “Spinnable Carbon Nanotube Forests Grown on Thin, Flexible Metallic Substrates,” Carbon, 48(12), pp. 3621–3627. [CrossRef]
Wasniewski, J. R., Altman, D. H., Hodson, S. L., Fisher, T. S., Bulusu, A., Graham, S., and Cola, B. A., 2011, “Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique,” ASME Conference Proceedings, pp. 231–240.
Emmenegger, C., Mauron, P., Züttel, A., Nützenadel, C., Schneuwly, A., Gallay, R., and Schlapbach, L., 2000, “Carbon Nanotube Synthesized on Metallic Substrates,” Appl. Surf. Sci., 162–163, pp. 452–456. [CrossRef]
Mujumdar, A. S., 2006, Handbook of Industrial Drying, 3rd ed., Taylor & Francis, London.
Lin, W., Moon, K. S., Zhang, S. J., Ding, Y., Shang, J. T., Chen, M. X., and Wong, C. P., 2010, “Microwave Makes Carbon Nanotubes Less Defective,” ACS Nano, 4(3), pp. 1716–1722. [CrossRef] [PubMed]
Su, H.-C., Chen, C.-H., Chen, Y.-C., Yao, D.-J., Chen, H., Chang, Y.-C., and Yew, T.-R., 2010, “Improving the Adhesion of Carbon Nanotubes to a Substrate Using Microwave Treatment,” Carbon, 48(3), pp. 805–812. [CrossRef]
Doerner, M., and Nix, W., 1986, “A Method for Interpreting the Data From Depth-Sensing Indentation Instruments,” J. Mater. Res., 1(4), pp. 601–609. [CrossRef]
Oliver, W. C., and Pharr, G. M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1583. [CrossRef]
Hu, H. P., Wang, X. W., and Xu, X. F., 1999, “Generalized Theory of the Photoacoustic Effect in a Multilayer Material,” J. Appl. Phys., 86(7), pp. 3953–3958. [CrossRef]
Benedict, L. X., Louie, S. G., and Cohen, M. L., 1995, “Static Polarizabilities of Single-Wall Carbon Nanotubes,” Phys. Rev. B, 52(11), pp. 8541–8549. [CrossRef]
Ye, Z., Deering, W. D., Krokhin, A., and Roberts, J. A., 2006, “Microwave Absorption by an Array of Carbon Nanotubes: A Phenomenological Model,” Phys. Rev. B, 74(7), p. 075425. [CrossRef]
Dong, L. F., Youkey, S., Bush, J., Jiao, J., Dubin, V. M., and Chebiam, R. V., 2007, “Effects of Local Joule Heating on the Reduction of Contact Resistance Between Carbon Nanotubes and Metal Electrodes,” J. Appl. Phys., 101(2), p. 024320. [CrossRef]
Harutyunyan, A. R., Pradhan, B. K., Chang, J. P., Chen, G. G., and Eklund, P. C., 2002, “Purification of Single-Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles,” J. Phys. Chem. B, 106(34), pp. 8671–8675. [CrossRef]
Chen, C. M., Chen, M., Peng, Y. W., Yu, H. W., and Chen, C. F., 2006, “High Efficiency Microwave Digestion Purification of Multi-Walled Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition,” Thin Solid Films, 498(1–2), pp. 202–205. [CrossRef]
Chen, C. M., Chen, M., Peng, Y. W., Lin, C. H., Chang, L. W., and Chen, C. F., 2005, “Microwave Digestion and Acidic Treatment Procedures for the Purification of Multi-Walled Carbon Nanotubes,” Diamond Relat. Mater., 14(3–7), pp. 798–803. [CrossRef]
Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., 1993, “Opening Carbon Nanotubes With Oxygen and Implications for Filling,” Nature, 362(6420), pp. 522–525. [CrossRef]
Qiu, A., Fowler, S., Jiao, J., Kiener, D., and Bahr, D., 2011, “Time-Dependent Contact Behavior Between Diamond and a CNT Turf,” Nanotechnology, 22, p. 295702. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Scanning electron micrograph of CNT arrays grown on both sides of aluminum foil before microwave treatment. (b) Illustration of CNT alignment on one side of the aluminum foil substrates as a result of the electric field applied to the sample during microwave treatment. Electric field forces perpendicular to the substrate pull individual CNTs into alignment.

Grahic Jump Location
Fig. 2

Morphological characterization of double-sided, CNT-coated foil structures. (a) Scanning electron micrograph of CNTs on aluminum foil substrate before microwave treatment. (b) Scanning electron micrograph of the CNT sample in frame (a) after microwave treatment. (c) Raman spectra of CNTs before and after microwave treatment. (d) Transmission electron micrographs of a representative CNT before and after microwave treatment.

Grahic Jump Location
Fig. 3

Mechanical, thermal, and electrical testing of double-sided, CNT-coated foil structures. (a) Load–displacement curve for CNT samples before and after microwave treatment. (b) Measured phase shift in PA measurement of CNT samples before and after microwave treatment. (c) Current–voltage characteristics of CNT samples before and after microwave treatment.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In