0
SPECIAL SECTION PAPERS

Effect of Substrate and Nanoparticle Spacing on Plasmonic Enhancement in Three-Dimensional Nanoparticle Structures

[+] Author and Article Information
Anil Yuksel

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712
e-mail: anil.yuksel@utexas.edu

Edward T. Yu

Microelectronics Research Center,
Department of Electrical and
Computer Engineering,
The University of Texas at Austin,
Austin, TX 78712

Jayathi Murthy

Henry Samueli School of Engineering and
Applied Science,
University of California, Los Angeles,
Los Angeles, CA 90095

Michael Cullinan

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received June 16, 2017; final manuscript received August 18, 2017; published online September 27, 2017. Assoc. Editor: Yayue Pan.

J. Micro Nano-Manuf 5(4), 040903 (Sep 27, 2017) (9 pages) Paper No: JMNM-17-1035; doi: 10.1115/1.4037770 History: Received June 16, 2017; Revised August 18, 2017

Surface plasmon polaritons associated with light-nanoparticle interactions can result in dramatic enhancement of electromagnetic fields near and in the gaps between the particles, which can have a large effect on the sintering of these nanoparticles. For example, the plasmonic field enhancement within nanoparticle assemblies is affected by the particle size, spacing, interlayer distance, and light source properties. Computational analysis of plasmonic effects in three-dimensional (3D) nanoparticle packings are presented herein using 532 nm plane wave light. This analysis provides insight into the particle interactions both within and between adjacent layers for multilayer nanoparticle packings. Electric field enhancements up to 400-fold for transverse magnetic (TM) or X-polarized light and 26-fold for transverse electric (TE) or Y-polarized light are observed. It is observed that the thermo-optical properties of the nanoparticle packings change nonlinearly between 0 and 10 nm gap spacing due to the strong and nonlocal near-field interaction between the particles for TM polarized light, but this relationship is linear for TE polarized light. These studies help provide a foundation for understanding micro/nanoscale heating and heat transport for Cu nanoparticle packings under 532 nm light under different polarization for the photonic sintering of nanoparticle assemblies.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Niittynen, J. , Sowade, E. , Kang, H. , Baumann, R. R. , and Mäntysalo, M. , 2015, “ Comparison of Laser and Intense Pulsed Light Sintering (IPL) for Inkjet-Printed Copper Nanoparticle Layers,” Sci. Rep., 5, p. 8832. [CrossRef] [PubMed]
Hwang, H. J. , Oh, K. H. , and Kim, H. S. , 2016, “ All-Photonic Drying and Sintering Process Via Flash White Light Combined With Deep-UV and Near-Infrared Irradiation for Highly Conductive Copper Nano-Ink,” Sci. Rep., 6, p. 19696. [CrossRef] [PubMed]
Cheng, C. W. , and Chen, J. K. , 2016, “ Femtosecond Laser Sintering of Copper Nanoparticles,” Appl. Phys. A, 122(4), p. 289. [CrossRef]
Paeng, D. , Yeo, J. , Lee, D. , Moon, S. J. , and Grigoropoulos, C. P. , 2015, “ Laser Wavelength Effect on Laser-Induced Photo-Thermal Sintering of Silver Nanoparticles,” Appl. Phys. A, 120(4), pp. 1229–1240. [CrossRef]
Mubeen, S. , Zhang, S. , Kim, N. , Lee, S. , Krämer, S. , Xu, H. , and Moskovits, M. , 2012, “ Plasmonic Properties of Gold Nanoparticles Separated From a Gold Mirror by an Ultrathin Oxide,” Nano Lett., 12(4), pp. 2088–2094. [CrossRef] [PubMed]
Shen, S. , Narayanaswamy, A. , and Chen, G. , 2009, “ Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps,” Nano Lett., 9(8), pp. 2909–2913. [CrossRef] [PubMed]
Klar, T. , Perner, M. , Grosse, S. , Von Plessen, G. , Spirkl, W. , and Feldmann, J. , 1998, “ Surface-Plasmon Resonances in Single Metallic Nanoparticles,” Phys. Rev. Lett., 80(19), pp. 4249–4252. [CrossRef]
Chen, G. , 2005, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, Oxford, UK.
Bugeda Miguel Cervera, G. , and Lombera, G. , 1999, “ Numerical Prediction of Temperature and Density Distributions in Selective Laser Sintering Processes,” Rapid Prototyping J., 5(1), pp. 21–26. [CrossRef]
Dong, L. , Makradi, A. , Ahzi, S. , and Remond, Y. , 2009, “ Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process,” J. Mater. Process. Technol., 209(2), pp. 700–706. [CrossRef]
Kolossov, S. , Boillat, E. , Glardon, R. , Fischer, P. , and Locher, M. , 2004, “ 3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process,” Int. J. Mach. Tools Manuf., 44(2), pp. 117–123. [CrossRef]
Nelson, J. C. , Xue, S. , Barlow, J. W. , Beaman, J. J. , Marcus, H. L. , and Bourell, D. L. , 1993, “ Model of the Selective Laser Sintering of Bisphenol-A Polycarbonate,” Ind. Eng. Chem. Res., 32(10), pp. 2305–2317. [CrossRef]
Patil, R. B. , and Yadava, V. , 2007, “ Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering,” Int. J. Mach. Tools Manuf., 47(7), pp. 1069–1080. [CrossRef]
Singh, A. K. , and Srinivasa Prakash, R. , 2010, “ Response Surface-Based Simulation Modeling for Selective Laser Sintering Process,” Rapid Prototyping J., 16(6), pp. 441–449. [CrossRef]
Tontowi, A. E. , and Childs, T. H. C. , 2001, “ Density Prediction of Crystalline Polymer Sintered Parts at Various Powder Bed Temperatures,” Rapid Prototyping J., 7(3), pp. 180–184. [CrossRef]
Williams, J. D. , and Deckard, C. R. , 1998, “ Advances in Modeling the Effects of Selected Parameters on the SLS Process,” Rapid Prototyping J., 4(2), pp. 90–100. [CrossRef]
Coquard, R. , and Baillis, D. , 2004, “ Radiative Characteristics of Opaque Spherical Particles Beds: A New Method of Prediction,” J. Thermophys. Heat Transfer, 18(2), pp. 178–186. [CrossRef]
Kamiuto, K. , 2005, “ Correlated Radiative Transfer Through a Packed Bed of Opaque Spheres,” Int. Commun. Heat Mass Transfer, 32(1), pp. 133–139. [CrossRef]
Singh, B. P. , and Kaviany, M. , 1992, “ Modelling Radiative Heat Transfer in Packed Beds,” Int. J. Heat Mass Transfer, 35(6), pp. 1397–1405. [CrossRef]
Howell, J. R. , and Klein, D. E. , 1983, “ Radiative Heat Transfer Through a Randomly Packed Bed of Spheres by the Monte Carlo Method,” ASME J. Heat Transfer, 105(2), pp. 325–332. [CrossRef]
Zhou, J. , Zhang, Y. , and Chen, J. K. , 2009, “ Numerical Simulation of Laser Irradiation to a Randomly Packed Bimodal Powder Bed,” Int. J. Heat Mass Transfer, 52(13), pp. 3137–3146. [CrossRef]
Feng, Y. T. , Han, K. , Li, C. F. , and Owen, D. R. J. , 2008, “ Discrete Thermal Element Modelling of Heat Conduction in Particle Systems: Basic Formulations,” J. Comput. Phys., 227(10), pp. 5072–5089. [CrossRef]
Tsory, T. , Ben-Jacob, N. , Brosh, T. , and Levy, A. , 2013, “ Thermal DEM–CFD Modeling and Simulation of Heat Transfer Through Packed Bed,” Powder Technol., 244, pp. 52–60. [CrossRef]
Widenfeld, G. , Weiss, Y. , and Kalman, H. , 2003, “ The Effect of Compression and Preconsolidation on the Effective Thermal Conductivity of Particulate Beds,” Powder Technol., 133(1), pp. 15–22. [CrossRef]
Zhang, H. W. , Zhou, Q. , Xing, H. L. , and Muhlhaus, H. , 2011, “ A DEM Study on the Effective Thermal Conductivity of Granular Assemblies,” Powder Technol., 205(1), pp. 172–183. [CrossRef]
Bosbach, J. , Martin, D. , Stietz, F. , Wenzel, T. , and Träger, F. , 1999, “ Laser-Based Method for Fabricating Monodisperse Metallic Nanoparticles,” Appl. Phys. Lett., 74(18), pp. 2605–2607. [CrossRef]
Kuznetsov, A. I. , Kiyan, R. , and Chichkov, B. N. , 2010, “ Laser Fabrication of 2D and 3D Metal Nanoparticle Structures and Arrays,” Opt. Express, 18(20), pp. 21198–21203. [CrossRef] [PubMed]
Yuksel, A. , and Cullinan, M. , 2016, “ Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems,” Addit. Manuf., 12(Part B), pp. 204–215. [CrossRef]
Li, L. , Hong, M. , Schmidt, M. , Zhong, M. , Malshe, A. , Huis, B. , and Kovalenko, V. , 2011, “ Laser Nano-Manufacturing–State of the Art and Challenges,” CIRP Annals-Manuf. Technol., 60(2), pp. 735–755. [CrossRef]
Sosa, I. O. , Noguez, C. , and Barrera, R. G. , 2003, “ Optical Properties of Metal Nanoparticles With Arbitrary Shapes,” J. Phys. Chem. B, 107(26), pp. 6269–6275. [CrossRef]
Evlyukhin, A. B. , Brucoli, G. , Martín-Moreno, L. , Bozhevolnyi, S. I. , and García-Vidal, F. J. , 2007, “ Surface Plasmon Polariton Scattering by Finite-Size Nanoparticles,” Phys. Rev. B, 76(7), p. 075426. [CrossRef]
Johnson, P. B. , and Christy, R. W. , 1972, “ Optical Constants of the Noble Metals,” Phys. Rev. B, 6(12), pp. 4370–4379. [CrossRef]
Hutter, T. , Elliott, S. R. , and Mahajan, S. , 2012, “ Interaction of Metallic Nanoparticles With Dielectric Substrates: Effect of Optical Constants,” Nanotechnology, 24(3), p. 035201. [CrossRef] [PubMed]
Maier, S. A. , Kik, P. G. , and Atwater, H. A. , 2003, “ Optical Pulse Propagation in Metal Nanoparticle Chain Waveguides,” Phys. Rev. B, 67(20), p. 205402. [CrossRef]
Sweatlock, L. A. , Maier, S. A. , Atwater, H. A. , Penninkhof, J. J. , and Polman, A. , 2005, “ Highly Confined Electromagnetic Fields in Arrays of Strongly Coupled Ag Nanoparticles,” Phys. Rev. B, 71(23), p. 235408. [CrossRef]
Wang, Y. , Duan, C. , Peng, L. , and Liao, J. , 2014, “ Dimensionality-Dependent Charge Transport in Close-Packed Nanoparticle Arrays: From 2D to 3D,” Sci. Rep., 4, p. 7565. [CrossRef] [PubMed]
Nicolas, R. , Lévêque, G. , Marae-Djouda, J. , Montay, G. , Madi, Y. , Plain, J. , and Maurer, T. , 2015, “ Plasmonic Mode Interferences and Fano Resonances in Metal-Insulator-Metal Nanostructured Interface,” Sci. Rep., 5(1), p. 14419. [CrossRef] [PubMed]
Zenou, M. , Ermak, O. , Saar, A. , and Kotler, Z. , 2013, “ Laser Sintering of Copper Nanoparticles,” J. Phys. D Appl. Phys., 47(2), p. 025501. [CrossRef]
Roy, N. K. , Yuksel, A. , and Cullinan, M. A. , 2015, “ μ-SLS of Metals: Physical and Thermal Characterization of Cu-Nanopowders,” Solid Freeform Fabrication Conference (SFF), Austin, TX, Aug. 7–9, pp. 772–788.

Figures

Grahic Jump Location
Fig. 1

Out of plane configurations: (a) single particle and (b) four particle

Grahic Jump Location
Fig. 2

Glass-copper nanoparticle: (a) absorption, scattering, and extinction cross section analysis of a single copper nanoparticle on a glass substrate and (b) the resistive heating loss in the copper nanoparticle on a glass substrate under λ = 532 nm, TM polarized (X-pol.) light with varying gap distance d and the background electric field norm

Grahic Jump Location
Fig. 3

Electric field enhancement |E/E0| for d = 0 and λ = 532 nm, TM (X-pol.) polarized light (case b): (a) front view of electric field enhancement, (b) zoom view of nanoparticles in (a), and (c) side view of electric field enhancement

Grahic Jump Location
Fig. 4

Electric field enhancement |E/E0| with λ = 532 nm, TM (X-pol.) polarized light varying d (case b)

Grahic Jump Location
Fig. 5

Electric Field Enhancement |E/E0| with λ = 532 nm, TE polarized (Y-pol.) light with d = 0 (case b)

Grahic Jump Location
Fig. 6

Electric field enhancement |E/E0| with λ = 532 nm, TE polarized (Y-pol.) light with varying d (case b)

Grahic Jump Location
Fig. 7

Absorption cross section (m2) versus particle spacing(d)

Grahic Jump Location
Fig. 8

Scattering cross section (m2) versus particle spacing (d)

Grahic Jump Location
Fig. 9

Extinction cross section (m2) versus particle spacing (d)

Grahic Jump Location
Fig. 10

Single-scattering Albedo versus particle spacing (d)

Grahic Jump Location
Fig. 11

Time-averaged Poynting vector (W/m2) on the glass substrate and the air medium of the nanoparticles (case b) under λ = 532 nm, TM (X-pol.) polarized light

Grahic Jump Location
Fig. 12

Time-averaged Poynting vector (W/m2) on the glass substrate and the air medium of the nanoparticles (case b) under λ = 532 nm, TE (Y-pol.) polarized light

Grahic Jump Location
Fig. 13

Total resistive heating loss in the nanoparticles on a glass substrate under λ = 532 nm light with varying (d)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In