0
Research Papers

Graphene Oxide Colloidal Suspensions as Cutting Fluids for Micromachining—Part I: Fabrication and Performance Evaluation

[+] Author and Article Information
Bryan Chu

Department of Mechanical Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: chub3@rpi.edu

Eklavya Singh

Department of Mechanical Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: singhe2@rpi.edu

Johnson Samuel

Assistant Professor
Department of Mechanical Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: samuej2@rpi.edu

Nikhil Koratkar

Professor
Department of Mechanical Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: koratn@rpi.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received May 7, 2015; final manuscript received July 14, 2015; published online August 21, 2015. Assoc. Editor: Sangkee Min.

J. Micro Nano-Manuf 3(4), 041002 (Aug 21, 2015) (8 pages) Paper No: JMNM-15-1031; doi: 10.1115/1.4031135 History: Received May 07, 2015; Revised July 14, 2015

This paper is aimed at investigating the effects of graphene oxide platelet (GOP) geometry (i.e., lateral size and thickness) and oxygen functionalization on the cooling and lubrication performance of GOP colloidal suspensions. The techniques of thermal reduction and ultrasonic exfoliation were used to manufacture three different types of GOPs. For each of these three types of GOPs, colloidal solutions with GOP concentrations varying between 0.1 and 1 wt.% were evaluated for their dynamic viscosity, thermal conductivity, and micromachining performance. The ultrasonically exfoliated GOPs (with 2–3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micromachining applications. Even at the lowest concentration of 0.1 wt.%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semisynthetic cutting fluid. For the thermally reduced GOPs (TR GOPs) (with 4–8 graphene layers and in-solution characteristic lateral length of 562–2780 nm), a concentration of 0.2 wt.% appears to be optimal. The findings suggest that the differences seen between the colloidal suspensions in terms of their droplet spreading, evaporation, and the subsequent GOP film-formation characteristics may be better indicators of their machining performance, as opposed to their bulk fluid properties.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ehmann, K. F. , Bourell, D. , Culpepper, M. L. , Hodgson, T. J. , Kurfess, T. R. , Madou, M. , Rajurkar, K. , and DeVor, R. E. , 2005, “ Micromanufacturing: International Research and Development,” World Technology Evaluation Center (WTEC) Panel Report, Baltimore, MD, http://www.wtec.org/micromfg/report/Micro-report.pdf
Liu, X. , DeVor, R. E. , Kapoor, S. G. , and Ehmann, K. F. , 2004, “ The Mechanics of Machining at the Micro-Scale: Assessment of the Current State of the Science,” ASME J. Manuf. Sci. Eng., 126(4), pp. 666–678. [CrossRef]
Honegger, A. E. , Langstaff, G. Q. , Phillip, A. G. , Vanravenswaay, T. D. , Kapoor, S. G. , and DeVor, R. E. , 2006, “ Development of an Automated Microfactory—Part 1: Microfactory Architecture and Sub-Systems Development,” Transactions of NAMRI SME, Vol. 34, pp. 333–340.
Honegger, A. E. , Langstaff, G. Q. , Phillip, A. G. , Vanravenswaay, T. D. , Kapoor, S. G. , and DeVor, R. E. , 2006, “ Development of an Automated Microfactory—Part 2: Experimentation and Analysis,” Transactions of NAMRI SME, Vol. 34, pp. 341–348.
Ellicott, G. J. , DeVor, R. E. , and Kapoor, S. G. , 2009, “ Machinability Investigation of Micro-Scale Hard Turning of 52100 Steel,” Transactions of NAMRI/SME, Vol. 37, pp. 143–150.
Zesheng, L. , Haijun, H. , Yahou, S. , and Qing, S. , 2010, “ Study of Residual Stresses in Ultrasonic Torsional Vibration Assisted Micro-Milling,” Proc. SPIE, 7657, p. 76571F.
Wang, B. , Liang, Y. C. , Zhao, Y. , and Dong, S. , 2006, “ Measurement of the Residual Stress in the Micro Milled Thin-Walled Structures,” J. Phys.: Conf. Ser., 48, pp. 1127–1130. [CrossRef]
Liu, X. , DeVor, R. E. , and Kapoor, S. G. , 2006, “ An Analytical Model for the Prediction of Minimum Chip Thickness in Micro-Machining,” ASME J. Manuf. Sci. Eng., 128(2), pp. 474–481. [CrossRef]
Jun, M. B. G. , DeVor, R. E. , Kapoor, S. G. , and Englert, F. , 2008, “ Experimental Investigation of Machinability and Tool Wear in Micro-Endmilling,” Transactions of NAMRI/SME, Vol. 36, pp. 201–208.
Hidehito, W. , Hideo, T. , and Masami, M. , 2009, “ High-Speed Micro Drilling on Printed Circuit Boards-Influence of PCB Composite Material on Drill Breakage,” J. Jpn. Soc. Precis. Eng., 75(12), pp. 1428–1433. [CrossRef]
Kai, L. , and Melkote, S. N. , 2006, “ Effect of Plastic Side Flow on Surface Roughness in Micro-Turning Process,” Int. J. Mach. Tools Manuf., 46(14), pp. 1778–1785. [CrossRef]
Sood, S. , Samuel, J. , DeVor, R. E. , and Kapoor, S. G. , 2010, “ Micro-Scale Machining of Bulk Metallic Glass,” 5th International Conference on Micro-Machining, Madison, WI, pp. 149–156.
Saoubi, R. M. , Outeiro, J. C. , Chandrasekaran, H. , Dillon, O. W. , and Jawahir, I. S. , 2008, “ A Review of Surface Integrity in Machining and Its Effects on Functional Performance and Life of Machined Products,” Int. J. Sustainable Manuf., 1(1–2), pp. 203–236. [CrossRef]
Tansel, I. N. , Arkan, T. T. , Bao, W. Y. , Mahendrakar, N. , Shisler, B. , Smith, D. , and McCool, M. , 2000, “ Tool Wear Estimation in Micro-Machining—Part I: Tool Usage-Cutting Force Relationship,” Int. J. Mach. Tools Manuf., 40(4), pp. 599–608. [CrossRef]
Torres, C. D. , Heaney, P. J. , Sumant, A. V. , Hamilton, M. A. , Carpick, E. W. , and Pfefferkorn, F. E. , 2009, “ Analyzing the Performance of Diamond-Coated Micro End Mills,” Int. J. Mach. Tools Manuf., 49(7–8), pp. 599–612. [CrossRef]
Samuel, J. , Rafiee, J. , Dhiman, P. , Yu, Z.-Z. , and Koratkar, N. , 2011, “ Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids,” J. Phys. Chem. C, 115(8), pp. 3410–3415. [CrossRef]
Chu, B. , Singh, E. , Koratkar, N. , and Samuel, J. , 2013, “ Graphene-Enhanced Environmentally-Benign Cutting Fluids for High-Performance Micro-Machining Applications,” J. Nanosci. Nanotechnol., 13(8), pp. 5500–5504. [CrossRef] [PubMed]
Smith, P. J. , Chu, B. , Singh, E. , Chow, P. , Samuel, J. , and Koratkar, N. , 2015, “ Graphene Oxide Colloidal Suspensions Mitigate Carbon Diffusion During Diamond Turning of Steel,” J. Manuf. Processes, 17, pp. 41–47. [CrossRef]
Hummers, W. S., Jr. , and Offeman, R. E. , 1958, “ Preparation of Graphitic Oxide,” J. Am. Chem. Soc., 80(6), p. 1339. [CrossRef]
Dreyer, D. R. , Park, S. , Bielawski, C. W. , and Ruoff, R. S. , 2010, “ The Chemistry of Graphene Oxide,” Chem. Soc. Rev., 39(1), pp. 228–240. [CrossRef] [PubMed]
McAllister, M. J. , Li, J. L. , Adamson, D. H. , Schniepp, H. C. , Abdala, A. A. , Liu, J. , Alonso, M. H. , and Aksay, I. A. , 2007, “ Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater., 19(18), pp. 4396–4404. [CrossRef]
You, S. , Luzan, S. M. , Szabo, T. , and Talyzin, A. V. , 2013, “ Effect of Synthesis Method on Solvation and Exfoliation of Graphite Oxide,” Carbon, 52, pp. 171–180. [CrossRef]
Stankovich, S. , Dikin, D. A. , Piner, R. D. , Kohlhaas, K. A. , Kleinhammes, A. , Jia, Y. , Wu, Y. , Nguyen, S. T. , and Ruoff, R. S. , 2007, “ Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon, 45(7), pp. 1558–1565. [CrossRef]
Rourke, J. P. , Pandey, P. A. , Moore, J. J. , Bates, M. , Kinloch, I. A. , Young, R. J. , and Wilson, N. R. , 2011, “ The Real Graphene Oxide Revealed: Stripping the Oxidative Debris From the Graphene Like Sheets,” Angew. Chem., 123(14), pp. 3231–3235. [CrossRef]
Braun, A. , Couteau, O. , Franks, K. , Kestens, V. , Roebben, G. , Lamberty, A. , and Linsinger, T. P. J. , 2011, “ Validation of Dynamic Light Scattering and Centrifugal Liquid Sedimentation Methods for Nanoparticle Characterization,” Adv. Powder Technol., 22(6), pp. 766–770. [CrossRef]
Stoller, M. D. , Park, S. , Zhu, Y. , An, J. , and Ruoff, R. S. , 2008, “ Graphene-Based Ultracapacitors,” Nano Lett., 8(10), pp. 3498–3502. [CrossRef] [PubMed]
Schniepp, H. C. , Li, J. L. , McAllister, M. J. , Sai, H. , Herrera-Alonso, M. , Adamson, D. H. , Prud'homme, R. K. , Car, R. , Saville, D. A. , and Aksay, I. A. , 2006, “ Functionalized Single Graphene Sheets Derived From Splitting Graphite Oxide,” J. Phys. Chem. B, 110(17), pp. 8535–8539. [CrossRef] [PubMed]
Du, Q. , Zheng, M. , Zhang, L. , Wang, Y. , Chen, J. , Xue, L. , Dai, W. , Ji, G. , and Cao, J. , 2010, “ Preparation of Functionalized Graphene Sheets by a Low-Temperature Thermal Exfoliation Approach and Their Electrochemical Supercapacitive Behaviors,” Electrochim. Acta, 55(12), pp. 3897–3903. [CrossRef]
Karthikeyan, N. R. , Philip, J. , and Raj, B. , 2008, “ Effect of Clustering on the Thermal Conductivity of Nanofluids,” Mater. Chem. Phys., 109(1), pp. 50–55. [CrossRef]
Bittorf, P. J. , Kapoor, S. G. , DeVor, R. E. , and Rajagopalan, N. , 2006, “ Effect of Water Phase Surface Tension and Viscosity on Metalworking Fluid Functionality,” Transactions of the North American Manufacturing Research Institute of SME, Vol. 34, pp. 555–562.
Bittorf, P. J. , Kapoor, S. G. , DeVor, R. E. , and Rajagopalan, N. , 2007, “ Transiently Stable Emulsions for Metalworking Fluids,” Transactions of the North American Manufacturing Research Institute of SME, Vol. 35, pp. 343–350.
Jun, M. B. G. , Joshi, S. S. , DeVor, R. E. , and Kapoor, S. G. , 2008, “ An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining,” ASME J. Manuf. Sci. Eng., 130(3), p. 031118. [CrossRef]
Ghai, I. , Wentz, J. E. , Kapoor, S. G. , DeVor, R. E. , and Samuel, J. , 2010, “ Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micro-Machining,” ASME J. Manuf. Sci. Eng., 132(1), p. 011017. [CrossRef]
Ghai, I. , Samuel, J. , DeVor, R. E. , and Kapoor, S. G. , 2013, “ Analysis of Droplet Spreading on a Rotating Surface and the Prediction of Cooling and Lubrication Performance of an Atomization-Based Cutting Fluid System,” ASME J. Manuf. Sci. Eng., 135(3), p. 031003. [CrossRef]
Kwon, P. , Schiemann, T. , and Kountanya, R. , 2001, “ An Inverse Estimation Scheme to Measure Steady-State Tool-Chip Interface Temperatures Using an Infrared Camera,” Int. J. Mach. Tool Manuf.,” 41(7), pp. 1015–1030. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

SEM images of GOPs: (a) TR500, (b) TR1050, and (c) US

Grahic Jump Location
Fig. 2

X-ray diffraction data of GO

Grahic Jump Location
Fig. 1

Overall process flow for preferred methods of GOP production

Grahic Jump Location
Fig. 6

Experimental setup with inset showing thermocouple bead location [18]: (A) high-speed spindle, (B) workpiece, (C) Y-Z stage of machine, (D) CBN tool, (E) dynamometer, (F) X stage of machine, (G) cutting fluid dispensing syringe, and (H) thermocouple

Grahic Jump Location
Fig. 7

Cutting temperature and cutting force trends seen for the GOP colloidal solutions (note: thermocouple measurements have a repeatability of ±0.1 °C and dry cutting conditions gave a temperature rise of 35 °C): (a) percent difference in maximum temperature rise compared to baseline cutting fluid and (b) resultant cutting force trends

Grahic Jump Location
Fig. 8

Surface roughness trends seen for GOP colloidal solutions

Grahic Jump Location
Fig. 4

DLS data showing the statistical distribution of various GOP sizes: (a) TR500, (b) TR1050, and (c) US

Grahic Jump Location
Fig. 5

BET adsorption–desorption isotherms for TR GOP powders

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In