0
Research Papers

Controlled Kinetic Monte Carlo Simulation for Computer-Aided Nanomanufacturing

[+] Author and Article Information
Yan Wang

Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: yan.wang@me.gatech.edu

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received March 21, 2014; final manuscript received August 22, 2015; published online September 23, 2015. Assoc. Editor: John P. Coulter.

J. Micro Nano-Manuf 4(1), 011001 (Sep 23, 2015) (10 pages) Paper No: JMNM-14-1017; doi: 10.1115/1.4031461 History: Received March 21, 2014; Revised August 22, 2015

Kinetic Monte Carlo (KMC) is regarded as an efficient tool for rare event simulation and has been applied in simulating bottom–up self-assembly processes of nanomanufacturing. Yet it has limitations to simulate top–down processes. In this paper, a new and generalized KMC mechanism, called controlled KMC or controlled KMC (cKMC), is proposed to simulate complete physical and chemical processes. This generalization is enabled by the introduction of controlled events. In contrast to the traditional self-assembly events in KMC, controlled events occur at certain times, locations, or directions, which allows all events to be modeled. A formal model of cKMC is also presented to show the generalization. The applications of cKMC to several top–down and bottom–up processes are demonstrated.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lyons, K. W. , 2007, “ Integration, Interoperability, and Information Management: What are the Key Issues for Nanomanufacturing?,” Proc. SPIE, 6648, p. 66480D.
Xia, Y. , Rogers, J. A. , Paul, K. E. , and Whitesides, G. M. , 1999, “ Unconventional Methods for Fabricating and Patterning Nanostructures,” Chem. Rev, 99(7), pp. 1823–1848. [CrossRef] [PubMed]
Busnaina, A. , ed., 2006, Nanomanufacturing Handbook, CRC Press, Boca Raton.
Tseng, A. A. , ed., 2008, Nanofabrication: Fundamentals and Applications, World Scientific Publishing, Singapore.
Komanduri, R. , and Raff, L. M. , 2001, “ A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale,” Proc. Inst. Mech. Eng., Part B, 215(12), pp. 1639–1672. [CrossRef]
Fang, T.-H. , Weng, C.-I. , and Chang, J.-G. , 2002, “ Molecular Dynamics Simulation of Nano-Lithography Process Using Atomic Force Microscopy,” Surf. Sci., 501(1), pp. 138–147. [CrossRef]
Jun, S. , Lee, Y. , Kim, S. Y. , and Im, S. , 2004, “ Large-Scale Molecular Dynamics Simulations of Al(111) Nanoscratching,” Nanotechnology, 15(9), pp. 1169–1174. [CrossRef]
Komanduri, R. , Chandrasekaran, N. , and Raff, L. M. , 1998, “ Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach,” Wear, 219(1), pp. 84–97. [CrossRef]
Komanduri, R. , Chandrasekaran, N. , and Raff, L. M. , 2001, “ Molecular Dynamics Simulation of the Nanometric Cutting of Silicon,” Philos. Mag. B, 81(12), pp. 1989–2019. [CrossRef]
Yang, Y. , Chen, S. , Cheng, K. , and Sun, X. , 2007, “ Diamond Turning of Microstructured Surfaces: Modeling and Simulation,” Int. J. Nanomanuf., 1(5), pp. 627–640. [CrossRef]
Han, X. , 2007, “ Study Micromechanism of Surface Planarization in the Polishing Technology Using Numerical Simulation Method,” Appl. Surf. Sci., 253(14), pp. 6211–6216. [CrossRef]
Shimada, S. , Ikawa, N. , Inamura, T. , Takezawa, N. , Ohmori, H. , and Sata, T. , 1995, “ Brittle-Ductile Transition Phenomena in Microindentation and Micromachining,” CIRP Ann. Manuf. Technol., 44(1), pp. 523–526. [CrossRef]
Stavropoulos, P. , and Chryssolouris, G. , 2007, “ Molecular Dynamics Simulations of Laser Ablation: The Morse Potential Function Approach,” Int. J. Nanomanuf., 1(6), pp. 736–750. [CrossRef]
Wang, N. , Rokhlin, S. I. , and Farson, D. F. , 2007, “ Nanoparticle Coalescence and Sintering: Molecular Dynamics Simulation,” Int. J. Nanomanuf., 1(6), pp. 810–824. [CrossRef]
Voter, A. F. , 1998, “ Parallel Replica Method for Dynamics of Infrequent Events,” Phys. Rev. B, 57(22), pp. R13985–R13988. [CrossRef]
Voter, A. F. , 1997, “ Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events,” Phys. Rev. Lett., 78(20), pp. 3908–3911. [CrossRef]
Sørensen, M. R. , and Voter, A. F. , 2000, “ Temperature-Accelerated Dynamics for Simulation of Infrequent Events,” J. Chem. Phys., 112(21), pp. 9599–9606. [CrossRef]
Chatterjee, A. , and Vlachos, D. G. , 2007, “ An Overview of Spatial Microscopic and Accelerated Kinetic Monte Carlo Methods,” J. Comp. Aided Mat. Des., 14(2), pp. 253–308. [CrossRef]
Lasrado, V. , Alhat, D. , and Wang, Y. , 2008, “ A Review of Recent Phase Transition Simulation Methods: Transition Path Search,” ASME Paper No. DETC2008-49410.
Alhat, D. , Lasrado, V. , and Wang, Y. , 2008, “ A Review of Recent Phase Transition Simulation Methods: Saddle Point Search,” ASME Paper No. DETC2008-49411.
Gillespie, D. T. , 1976, “ A General Method for Numerically Simulating the Stochastic Evolution of Coupled Chemical Reactions,” J. Comput. Phys., 22(4), pp. 403–434. [CrossRef]
Maksym, P. A. , 1988, “ Fast Monte Carlo Simulation of MBE Growth,” Semicond. Sci. Technol., 3(6), pp. 594–596. [CrossRef]
Blue, J. L. , Beichl, I. , and Sullivan, F. , 1995, “ Faster Monte Carlo Simulations,” Phys. Rev. E, 51(2), pp. R867–R868. [CrossRef]
Schulze, T. P. , 2008, “ Efficient Kinetic Monte Carlo Simulation,” J. Comput. Phys., 227(4), pp. 2455–2462. [CrossRef]
Wang, Y. , 2013, “ Reliable Kinetic Monte Carlo Simulation Based on Random Set Sampling,” Soft Comput., 17(8), pp. 1439–1451. [CrossRef]
Yang, Y. G. , Johnson, R. A. , and Wadley, H. N. G. , 1997, “ A Monte Carlo Simulation of the Physical Vapor Deposition of Nickel,” Acta Mater., 45(4), pp. 1455–1468. [CrossRef]
Huang, H. , Gilmer, G. H. , and Diaz de la Rubia, T. , 1998, “ An Atomistic Simulator for Thin Film Deposition in Three Dimensions,” J. Appl. Phys., 84(7), pp. 3636–3649. [CrossRef]
Yang, Y. G. , Zhou, X. W. , Johnson, R. A. , and Wadley, H. N. G. , 2001, “ Monte Carlo Simulation of Hyperthermal Physical Vapor Deposition,” Acta Mat., 49(16), pp. 3321–3332. [CrossRef]
Wang, L. , and Clancy, P. , 2001, “ Kinetic Monte Carlo Simulation of the Growth of Polycrystalline Cu Films,” Surf. Sci., 473(1–2), pp. 25–38. [CrossRef]
Dalla Torre, J. , Bilmer, G. H. , Windt, D. L. , Kalyanaraman, R. , Baumann, F. H. , O'Sullivan, P. L. , Sapjeta, J. , Diaz de la Rubia, T. , and Djafari Rouhani, M. , 2003, “ Microstructure of Thin Tantalum Films Sputtered Onto Inclined Substrates: Experiments and Atomistic Simulations,” J. Appl. Phys., 94(1), pp. 263–271. [CrossRef]
Battaile, C. C. , Srolovitz, D. J. , and Butler, J. E. , 1997, “ A Kinetic Monte Carlo Method for the Atomic-Scale Simulation of Chemical Vapor Deposition: Application to Diamond,” J. Appl. Phys., 82(12), pp. 6293–6300. [CrossRef]
Battaile, C. C. , and Srolovitz, D. J. , 2002, “ Kinetic Monte Carlo Simulation of Chemical Vapor Deposition,” Annu. Rev. Mater. Res., 32(1), pp. 297–319. [CrossRef]
Grujicic, M. , and Lai, S. G. , 1999, “ Atomistic Simulation of Chemical Vapor Deposition of (111)-Oriented Diamond Film Using a Kinetic Monte Carlo Method,” J. Mater. Sci., 34(1), pp. 7–20. [CrossRef]
Kalke, M. , and Baxter, D. V. , 2001, “ A Kinetic Monte Carlo Simulation of Chemical Vapor Deposition: Non-Monotonic Variation of Surface Roughness With Growth Temperature,” Surf. Sci., 477(2), pp. 95–101. [CrossRef]
Flidr, J. , Huang, Y.-C. , Newton, T. A. , and Hines, M. A. , 1998, “ Extracting Site-Specific Reaction Rates From Steady State Surface Morphologies: Kinetic Monte Carlo Simulations of Aqueous Si(111) Etching,” J. Chem. Phys., 108(13), pp. 5542–5553. [CrossRef]
Netto, A. , and Frenklach, M. , 2005, “ Kinetic Monte Carlo Simulations of CVD Diamond Growth—Interlay Among Growth, Etching, and Migration,” Diamond Relat. Mater., 14(10), pp. 1630–1646. [CrossRef]
Zhou, H. , Fu, J. , and Silver, R. M. , 2007, “ Time-Resolved Kinematic Monte-Carlo Simulation Study on Si(111) Etching,” J. Phys. Chem., 111(9), pp. 3566–3574.
Battaile, C. C. , Srolovitz, D. J. , Oleinik, I. I. , Pettifor, D. G. , Sutton, A. P. , Harris, S. J. , and Butler, J. E. , 1999, “ Etching Effects During the Chemical Vapor Deposition of (100) Diamond,” J. Chem. Phys., 111(9), pp. 4291–4299. [CrossRef]
Kratzer, P. , and Scheffler, M. , 2002, “ Reaction-Limited Island Nucleation in Molecular Beam Epitaxy of Compound Semiconductors,” Phys. Rev. Lett., 88(3), p. 036102(1-4). [CrossRef] [PubMed]
Mei, D. , Ge, Q. , Neurock, M. , Kieken, L. , and Lerou, J. , 2004, “ First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Decomposition Over Pt and Rh Surfaces Under Lean-Burn Conditions,” Mole. Phys., 102(4), pp. 361–369. [CrossRef]
Stumpf, R. , and Scheffler, M. , 1994, “ Theory of Self-Diffusion at and Growth of Al(111),” Phys. Rev. Lett., 72(2), pp. 254–257. [CrossRef] [PubMed]
Bogicevic, A. , Hyldgaard, P. , Wahnström, G. , and Lundqvist, B. I. , 1998, “ Al Dimmer Dynamics on Al(111),” Phys. Rev. Lett., 81(1), pp. 172–175. [CrossRef]
Prasad, M. , Conforti, P. F. , Garrison, B. J. , and Yingling, Y. G. , 2007, “ Computational Investigation Into the Mechanisms of UV Ablation of Poly(methyl methacrylate),” Appl. Surf. Sci., 253(15), pp. 6382–6385. [CrossRef]
Plimpton, S. , Thompson, A. , and Slepoy, A. , SPPARKS Kinetic Monte Carlo Simulator. http://spparks.sandia.gov/
Chou, S. Y. , Krauss, P. R. , and Renstrom, P. J. , 1996, “ Nanoimprint Lithography,” J. Vac. Sci. Technol. B, 14(6), pp. 4129–4133. [CrossRef]
Zankovych, S. , Hoffmann, T. , Seekamp, J. , Bruch, J.-U. , and Sotomayor Torres, C. M. , 2001, “ Nanoimprint Lightography: Challenges and Prospects,” Nanotechnology, 12(2), pp. 91–95. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Illustration of scanning probe lithography events

Grahic Jump Location
Fig. 2

Illustration of FIB events

Grahic Jump Location
Fig. 3

Illustration of NIL events

Grahic Jump Location
Fig. 4

Illustration of ionized PVD events

Grahic Jump Location
Fig. 5

cKMC model of NIL and the comparison between simulation and the SEM image from an experiment of a PMMA layer imprinted by a silicon dioxide mold. (a) SEM image of PMMA imprinted by silicon dioxide mold [45] (courtesy of Chou). (b) cKMC model of NIL process. (c) Species in NIL. (d) Surface roughness and angle estimated with particle coordinates from simulation result.

Grahic Jump Location
Fig. 6

cKMC model of NIL and the comparison between simulation and the SEM image from an experiment of a PMMA layer imprinted by a Cr stamp. (a) SEM image of PMMA imprinted by a Cr stamp [46] (courtesy of Sotomayor Torres). (b) cKMC simulation result. (c) comparison of the pattern profile between simulation and measurement.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In