Research Papers

Thermal Analysis of Directional Freezing Based Graphene Aerogel Three-Dimensional Printing Process

[+] Author and Article Information
Guanglei Zhao

Department of Industrial and
Systems Engineering,
University at Buffalo,
State University of New York,
Buffalo, NY 14260
e-mail: guanglei@buffalo.edu

Dong Lin

Department of Industrial and
Manufacturing Systems Engineering,
Kansas State University,
Manhattan, KS 66506
e-mail: dongl@ksu.edu

Chi Zhou

Department of Industrial and
Systems Engineering,
University at Buffalo,
State University of New York,
Buffalo, NY 14260
e-mail: chizhou@buffalo.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received September 27, 2016; final manuscript received November 26, 2016; published online January 10, 2017. Editor: Jian Cao.

J. Micro Nano-Manuf 5(1), 011006 (Jan 10, 2017) (8 pages) Paper No: JMNM-16-1056; doi: 10.1115/1.4035392 History: Received September 27, 2016; Revised November 26, 2016

A novel directional freezing based three-dimensional (3D) printing technique is applied to fabricate graphene aerogel (GA). Thermal property of the graphene ink is one of the key impacts on the material morphology and process efficiency/reliability. We develop a heat transfer model to predict temperature evolution of the printed materials and then estimate layer waiting time based on it. The proposed technique can not only improve the process efficiency and reliability but also serve as a flexible tool to predict and control the microstructure of the printed graphene aerogels. Both the simulation and experiment results demonstrate the efficiency and effectiveness of the proposed approach.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Balandin, A. A. , Ghosh, S. , Bao, W. , Calizo, I. , Teweldebrhan, D. , Miao, F. , and Lau, C. N. , 2008, “ Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907. [CrossRef] [PubMed]
Lee, C. , Wei, X. , Kysar, J. W. , and Hone, J. , 2008, “ Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, 321(5887), pp. 385–388. [CrossRef] [PubMed]
Neto, A. C. , Guinea, F. , Peres, N. , Novoselov, K. S. , and Geim, A. K. , 2009, “ The Electronic Properties of Graphene,” Rev. Mod. Phys., 81(1), p. 109. [CrossRef]
Novoselov, K. S. , Geim, A. K. , Morozov, S. , Jiang, D. , Zhang, Y. , Dubonos, S. A. , Grigorieva, I. , and Firsov, A. , 2004, “ Electric Field Effect in Atomically Thin Carbon Films,” Science, 306(5696), pp. 666–669. [CrossRef] [PubMed]
Geim, A. K. , and Novoselov, K. S. , 2007, “ The Rise of Graphene,” Nat. Mater., 6(3), pp. 183–191. [CrossRef] [PubMed]
Cong, H.-P. , Wang, P. , and Yu, S.-H. , 2013, “ Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design,” Chem. Mater., 25(16), pp. 3357–3362. [CrossRef]
Jakus, A. E. , Secor, E. B. , Rutz, A. L. , Jordan, S. W. , Hersam, M. C. , and Shah, R. N. , 2015, “ Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications,” ACS Nano, 9(4), pp. 4636–4648. [CrossRef] [PubMed]
Leigh, S. J. , Bradley, R. J. , Purssell, C. P. , Billson, D. R. , and Hutchins, D. A. , 2012, “ A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors,” PLoS One, 7(11), p. e49365. [CrossRef] [PubMed]
Maiti, U. N. , Lim, J. , Lee, K. E. , Lee, W. J. , and Kim, S. O. , 2014, “ Three-Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors,” Adv. Mater., 26(4), pp. 615–619. [CrossRef] [PubMed]
Menzel, R. , Barg, S. , Miranda, M. , Anthony, D. B. , Bawaked, S. M. , Mokhtar, M. , Al-Thabaiti, S. A. , Basahel, S. N. , Saiz, E. , and Shaffer, M. S. , 2015, “ Joule Heating Characteristics of Emulsion-Templated Graphene Aerogels,” Adv. Funct. Mater., 25(1), pp. 28–35. [CrossRef]
Wicklein, B. , Kocjan, A. , Salazar-Alvarez, G. , Carosio, F. , Camino, G. , Antonietti, M. , and Bergström, L. , 2015, “ Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide,” Nat. Nanotechnol., 10(3), pp. 277–283. [CrossRef] [PubMed]
Xu, X. , Li, H. , Zhang, Q. , Hu, H. , Zhao, Z. , Li, J. , Li, J. , Qiao, Y. , and Gogotsi, Y. , 2015, “ Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field,” ACS Nano, 9(4), pp. 3969–3977. [CrossRef] [PubMed]
Ye, S. , Feng, J. , and Wu, P. , 2013, “ Highly Elastic Graphene Oxide–Epoxy Composite Aerogels Via Simple Freeze-Drying and Subsequent Routine Curing,” J. Mater. Chem. A, 1(10), pp. 3495–3502. [CrossRef]
Vickery, J. L. , Patil, A. J. , and Mann, S. , 2009, “ Fabrication of Graphene–Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures,” Adv. Mater., 21(21), pp. 2180–2184. [CrossRef]
Estevez, L. , Kelarakis, A. , Gong, Q. , Da'as, E. H. , and Giannelis, E. P. , 2011, “ Multifunctional Graphene/Platinum/Nafion Hybrids Via Ice Templating,” J. Am. Chem. Soc., 133(16), pp. 6122–6125. [CrossRef] [PubMed]
Bourell, D. L. , Leu, M. C. , and Rosen, D. W. , 2009, “ Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing,” The University of Texas at Austin, Austin, TX, pp. 11–15.
García-Tuñon, E. , Barg, S. , Franco, J. , Bell, R. , Eslava, S. , D'Elia, E. , Maher, R. C. , Guitian, F. , and Saiz, E. , 2015, “ Printing in Three Dimensions With Graphene,” Adv. Mater., 27(10), pp. 1688–1693. [CrossRef] [PubMed]
Zhu, C. , Han, T. Y.-J. , Duoss, E. B. , Golobic, A. M. , Kuntz, J. D. , Spadaccini, C. M. , and Worsley, M. A. , 2015, “ Highly Compressible 3D Periodic Graphene Aerogel Microlattices,” Nat. Commun., 6, p. 6962.
Barnett, E. , Angeles, J. , Pasini, D. , and Sijpkes, P. , 2009, “ Robot-Assisted Rapid Prototyping for Ice Structures,” IEEE International Conference on Robotics and Automation, ICRA'09, May 12–17, pp. 146–151.
Bryant, F. D. , and Leu, M. C. , 2009, “ Predictive Modeling and Experimental Verification of Temperature and Concentration in Rapid Freeze Prototyping With Support Material,” ASME J. Manuf. Sci. Eng., 131(4), p. 041020. [CrossRef]
Ossino, A. , Barnett, E. , Angeles, J. , Pasini, D. , and Sijpkes, P. , 2009, “ Path Planning for Robot-Assisted Rapid Prototyping of Ice Structures,” Trans. Can. Soc. Mech. Eng., 33(4), pp. 689–700.
Zhao, X. , Landers, R. G. , and Leu, M. C. , 2010, “ Adaptive Extrusion Force Control of Freeze-Form Extrusion Fabrication Processes,” ASME J. Manuf. Sci. Eng., 132(6), p. 064504. [CrossRef]
Sui, G. , and Leu, M. C. , 2003, “ Thermal Analysis of Ice Walls Built by Rapid Freeze Prototyping,” ASME J. Manuf. Sci. Eng., 125(4), pp. 824–834. [CrossRef]
Liu, Q. , and Leu, M. C. , 2007, “ Finite Element Analysis of Solidification in Rapid Freeze Prototyping,” ASME J. Manuf. Sci. Eng., 129(4), pp. 810–820. [CrossRef]
Costa, S. , Duarte, F. , and Covas, J. A. , 2011, “ Using MATLAB to Compute Heat Transfer in Free Form Extrusion,” MATLAB—A Ubiquitous Tool for the Practical Engineer, C. M. Ionescu , ed., InTech, Rijeka, Croatia, p. 453.
Costa, S. , 2013, “ Free Form Extrusion: Extrusion of 3D Components Using Complex Polymeric Systems,” Ph.D. thesis, Universidade de Minho, Braga, Portugal.
Bellini, A. , Shor, L. , and Guceri, S. I. , 2005, “ New Developments in Fused Deposition Modeling of Ceramics,” Rapid Prototyping J., 11(4), pp. 214–220. [CrossRef]
Shen, N. , and Chou, K. , 2012, “ Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects,” ASME Paper No. MSEC2012-7253.
Zhang, Q. , Zhang, F. , Medarametla, S. P. , Li, H. , Zhou, C. , and Lin, D. , 2016, “ 3D Printing of Graphene Aerogels,” Small, 12(13), pp. 1702–1708. [CrossRef] [PubMed]
Moner-Girona, M. , Roig, A. , Molins, E. , and Llibre, J. , 2003, “ Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents,” J. Sol-Gel Sci. Technol., 26(1), pp. 645–649. [CrossRef]
Baumann, T. F. , Gash, A. E. , Chinn, S. C. , Sawvel, A. M. , Maxwell, R. S. , and Satcher, J. H. , 2005, “ Synthesis of High-Surface-Area Alumina Aerogels Without the Use of Alkoxide Precursors,” Chem. Mater., 17(2), pp. 395–401. [CrossRef]
Kakac, S. , and Yener, Y. , 1993, Heat Conduction, Taylor and Francis, Washington, DC, Chap. 2.
Bergman, T. L. , Incropera, F. P. , and Lavine, A. S. , 2011, Fundamentals of Heat and Mass Transfer, Wiley, Danvers, MA, pp. 260–261.


Grahic Jump Location
Fig. 1

(a) and (b) Three-dimensional printing graphene aerogel, 3D‐printed (c) truss structure and (d) 2.5D structure on caltkin, and (e) graphene aerogel with various wall thicknesses [29]

Grahic Jump Location
Fig. 2

A failed test case caused by inadequate waiting time

Grahic Jump Location
Fig. 3

Three types of heat transfer conditions

Grahic Jump Location
Fig. 4

Framework of the thermal analysis algorithm

Grahic Jump Location
Fig. 5

A 4 × 4 square model

Grahic Jump Location
Fig. 6

A 4 × 4 temperature evolution for square model without waiting time between layers

Grahic Jump Location
Fig. 7

Waiting until temperature of the deposited layers drops down to −19 °C

Grahic Jump Location
Fig. 8

Waiting time for the 40 × 4 model

Grahic Jump Location
Fig. 9

A 20 × 20 square and 20 × 20 triangle models

Grahic Jump Location
Fig. 10

Layer waiting time for models in Fig. 9

Grahic Jump Location
Fig. 11

Two similar geometries with different number of base layers

Grahic Jump Location
Fig. 12

Layer waiting time for models in Fig. 11

Grahic Jump Location
Fig. 13

Printing process of 3D cubic model

Grahic Jump Location
Fig. 14

Waiting time for 3D cubic model

Grahic Jump Location
Fig. 15

Printed part with designed waiting time between layer fabrications



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In