Research Papers

Material Dependence of the Contact Behavior of Oscillating Microprobes—Modeling and Experimental Evidence

[+] Author and Article Information
Sebastian Bohm

Technical Physics 1 Group;IMN MacroNano,
Technische Universität Ilmenau,
Max-Planck-Ring 12,
Ilmenau 98693, Germany
e-mail: sebastian.bohm@tu-ilmenau.de

Boris Goj

Micromechanical Systems Group;IMN MacroNano,
Technische Universität Ilmenau,
Max-Planck-Ring 12,
Ilmenau 98693, Germany
e-mail: boris.goj@tu-ilmenau.de

Lars Dittrich

Micromechanical Systems Group;IMN MacroNano,
Technische Universität Ilmenau,
Max-Planck-Ring 12,
Ilmenau 98693, Germany
e-mail: lars.dittrich@tu-ilmenau.de

Lothar Dressler

Micromechanical Systems Group;IMN MacroNano,
Technische Universität Ilmenau,
Max-Planck-Ring 12,
Ilmenau 98693, Germany
e-mail: lothar.dressler@tu-ilmenau.de

Martin Hoffmann

Micromechanical Systems Group;IMN MacroNano,
Technische Universität Ilmenau,
Max-Planck-Ring 12,
Ilmenau 98693, Germany
e-mail: martin.hoffmann@tu-ilmenau.de

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received September 16, 2016; final manuscript received December 13, 2016; published online March 2, 2017. Assoc. Editor: Don A. Lucca.

J. Micro Nano-Manuf 5(2), 021002 (Mar 02, 2017) (11 pages) Paper No: JMNM-16-1043; doi: 10.1115/1.4035619 History: Received September 16, 2016; Revised December 13, 2016

Oscillating microprobes avoid high stress and the sticking effect during contact between microprobe and measured surface. The full performance and application scope of oscillating microprobes can be explored and utilized once the reliable prediction of the microprobe contact behavior is understood. Here, an improved contact model considering adhesion forces, surface roughness, and viscoelastic damping for oscillating microprobes is presented and it is validated by exemplary measurements utilizing a uniaxially oscillating electrostatic microprobe. These results show that the nondestructive identification of material classes seems to be feasible by evaluating the phase shift between the sinusoidal signals of sensor and actuator, respectively.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Leach, R. K. , 2010, Fundamental Principles of Engineering Nanometrology, Elsevier Science, Oxford, UK.
Claverley, J. , and Leach, R. , 2013, “ Three-Dimensional Characterisation of a Novel Vibrating Tactile Probe for Miniature CMMs,” Laser Metrology and Machine Performance X (LAMDAMAP), Chicheley, UK, pp. 257–265.
Bos, E. J. C. , 2008, “ Tactile 3D Probing System for Measuring MEMS With Nanometer Uncertainty,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
Danzebrink, H. U. , Dai, G. , Pohlenz, F. , Dziomba, T. , Bütefisch, S. , Flügge, J. , and Bosse, H. , 2012, “ Dimensional Nanometrology at PTB,” IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria, pp. 898–901.
Ferreira, N. , Krah, T. , Jeong, D. C. , Metz, D. , Kniel, K. , Dietzel, A. , Büttgenbach, S. , and Härtig, F. , 2014, “ Integration of a Silicon-Based Microprobe Into a Gear Measuring Instrument for Accurate Measurement of Micro Gears,” Meas. Sci. Technol., 25(6), p. 064016. [CrossRef]
Haitjema, H. , Pril, W. O. , and Schellekens, P. H. J. , 2001, “ Development of a Silicon-Based Nanoprobe System for 3-D Measurements,” CIRP Ann.—Manuf. Technol., 50(1), pp. 365–368. [CrossRef]
Bos, E. J. C. , 2011, “ Aspects of Tactile Probing on the Micro Scale,” Precis. Eng., 35(2), pp. 228–240. [CrossRef]
Fearing, R. S. , 1995, “ Survey of Sticking Effects for Micro Parts Handling,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, Aug. 5–9, pp. 212–217.
Bhushan, B. , 2003, “ Adhesion and Stiction: Mechanisms, Measurement Techniques, and Methods for Reduction,” J. Vac. Sci. Technol., B, 21(6), pp. 2262–2296. [CrossRef]
Claverley, J. D. , and Leach, R. K. , 2009, “ A Vibrating Micro-Scale CMM Probe for Measuring High Aspect Ratio Structures,” Microsyst. Technol., 16(8), pp. 1507–1512.
van Riel, M. C. J. M. , Bos, E. J. C. , and Homburg, F. G. A. , 2014, “ Analysis of the Measurement Sensitivity of Multidimensional Vibrating Microprobes,” Meas. Sci. Technol., 25(7), p. 075008. [CrossRef]
Goj, B. , Dressler, L. , and Hoffmann, M. , 2014, “ Semi-Contact Measurements of Three-Dimensional Surfaces Utilizing a Resonant Uniaxial Microprobe,” Meas. Sci. Technol., 25(6), p. 064012. [CrossRef]
Hidaka, K. , and Schellekens, P. H. J. , 2006, “ Study of a Small-Sized Ultrasonic Probe,” CIRP Ann.—Manuf. Technol., 55(1), pp. 567–570. [CrossRef]
Goj, B. , Dressler, L. , and Hoffmann, M. , 2013, “ Resonant Probing System Comprising a High Accurate Uniaxial Nanoprobe and a New Evaluation Unit,” J. Micromech. Microeng., 23(9), p. 095012. [CrossRef]
Marinello, F. , Schiavuta, P. , Vezzù, S. , Patelli, A. , Carmignato, S. , and Savio, E. , 2011, “ Atomic Force Acoustic Microscopy for Quantitative Nanomechanical Characterization,” Wear, 271(3–4), pp. 534–538. [CrossRef]
Hertz, H. , 1882, “ Ueber die Berührung Fester Elastischer Körper,” J. Reine Angew. Math., 92, pp. 156–171.
Falcon, E. , Laroche, C. , Fauve, S. , and Coste, C. , 1998, “ Behavior of One Inelastic Ball Bouncing Repeatedly Off the Ground,” Eur. Phys. J. B, 3(1), pp. 45–57. [CrossRef]
Reed, J. , 1985, “ Energy Losses Due to Elastic Wave Propagation During an Elastic Impact,” J. Phys. D: Appl. Phys., 18(12), pp. 2329–2337. [CrossRef]
Zener, C. , 1941, “ The Intrinsic Inelasticity of Large Plates,” Phys. Rev., 59(8), pp. 669–673. [CrossRef]
Czichos, H. , and Habig, K.-H. , 2010, Tribologie-Handbuch, Vieweg+Teubner Verlag, Wiesbaden, Germany.
Popov, V. L. , 2010, Contact Mechanics and Friction, Springer-Verlag, Berlin.
Maugis, D. , 2000, Contact, Adhesion and Rupture of Elastic Solids, Springer-Verlag, Berlin.
Hunt, K. H. , and Crossley, F. R. E. , 1975, “ Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME J. Appl. Mech., 42(2), pp. 440–445. [CrossRef]
Kuwabara, G. , and Kono, K. , 1987, “ Restitution Coefficient in a Collision Between Two Spheres,” Jpn. J. Appl. Phys., 26(8), pp. 1230–1233. [CrossRef]
Landau, L. D. , Lifshitz, E. M. , and Schoepf, H. G. , eds., 1991, Lehrbuch der Theoretischen Physik, Vol. 7, Elastizitätstheorie, Akademie Verlag, Berlin, Germany.
Maugis, D. , 1992, “ Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,” J. Colloid Interface Sci., 150(1), pp. 243–269. [CrossRef]
Fuller, K. N. G. , and Tabor, D. , 1975, “ The Effect of Surface Roughness on the Adhesion of Elastic Solids,” Proc. R. Soc. A, 345(1642), pp. 327–342. [CrossRef]
Dupré, A. , and Dupré, P. , 1869, Théorie Mécanique de la Chaleur, Gauthier-Villars, Paris, France.
Johnson, K. L. , 1997, “ Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface,” Proc. R. Soc. A, 453(1956), pp. 163–179. [CrossRef]
Johnson, K. L. , 2003, Contact Mechanics, Vol. 9, Cambridge University Press, Cambridge, UK.
Saphirwerk AG, 2014, “ Eigenschaften der von Saphirwerk Bearbeiteten Werkstoffe,” Saphirwerk AG, Brügg, Switzerland, accessed Jan. 5, 2017, http://www.saphirwerk.com/assets/Downloads/Werkstoff-Eigenschaften-Saphirwerk-Stand-08-2014.pdf
Greenwood, J. A. , and Tripp, J. H. , 1967, “ The Elastic Contact of Rough Spheres,” ASME J. Appl. Mech., 34(1), pp. 153–159. [CrossRef]
von Hippel, A. R. , 1995, Dielectric Materials and Applications, Artech House, Boston, MA.
Bao, M. H. , 2000, Micro Mechanical Transducers, Volume 8: Pressure Sensors, Accelerometers and Gyroscopes (Handbook of Sensors and Actuators), Elsevier, Amsterdam, The Netherlands.
Gerlach, G. , and Dötzel, W. , 2006, Einführung in die Mikrosystemtechnik, Carl Hanser Verlag, München, Germany.
Nayak, P. R. , 1971, “ Random Process Model of Rough Surfaces,” J. Lubr. Technol., 93(3), pp. 398–407. [CrossRef]
Bronstein, I. N. , 2013, Taschenbuch der Mathematik, Europa-Lehrmittel, Haan-Gruiten, Germany.
Suhir, E. , Lee, Y. C. , and Wong, C. P. , 2007, Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, Springer Science+Business Media, Boston, MA.
Kort Kristalle GmbH, 2016, “ Korth Kristalle GmbH: Silizium (Si),” KortH Kristalle GmbH, Altenholz (Kiel), Germany.
Jaccodine, R. J. , 1963, “ Surface Energy of Germanium and Silicon,” J. Electrochem. Soc., 110(6), pp. 524–527. [CrossRef]
American Welding Society, 2006, Brazing and Soldering: Proceedings of the 3rd International Brazing and Soldering Conference, Stephens, J. J. , and Weil, K. S. , eds., ASM International, Materials Park, OH.
Johnston, I . D. , McCluskey, D. K. , Tan, C. K. L. , and Tracey, M. C. , 2014, “ Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering,” J. Micromech. Microeng., 24(3), p. 035017. [CrossRef]
Drummond, C. J. , and Chan, D. Y. C. , 1997, “ Van der Waals Interaction, Surface Free Energies, and Contact Angles: Dispersive Polymers and Liquids,” Langmuir, 13(14), pp. 3890–3895. [CrossRef]
Ceramaret SA, 2015, “ Werkstoffe: Die Keramiken: Aluminiumoxide (Al2O3),” Caramaret SA, Bôle, Switzerland, accessed Jan. 5, 2017, http://www.ceramaret.ch/de/technologien/werkstoffe
Rhee, S. K. , 1972, “ Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc., 55(6), pp. 300–303. [CrossRef]
MatWeb, 1996, “ Material Property Data,” MatWeb, LLC, Blacksburg, VA.
Skriver, H. L. , and Rosengaard, N. M. , 1992, “ Surface Energy and Work Function of Elemental Metals,” Phys. Rev. B, 46(11), pp. 7157–7168. [CrossRef]
Johnson, K. L. , Kendall, K. , and Roberts, A. D. , 1971, “ Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. A, 324(1558), pp. 301–313. [CrossRef]
Derjaguin, B. V. , Muller, V. M. , and Toporov, Y. P. , 1975, “ Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53(2), pp. 314–326. [CrossRef]
Sun, Q. , and Wang, G. , 2013, Mechanics of Granular Matter, WIT Press, Southampton, UK.


Grahic Jump Location
Fig. 2

Hysteresis in the total contact force indentation curves, F=FH+FDiss=43E*RKd3ed+β dαd˙ed, FH denotes the Hertzian contact force [16,21]

Grahic Jump Location
Fig. 1

Operation principle of oscillating microprobes for different contact directions

Grahic Jump Location
Fig. 3

Geometric parameters of the Maugis theory according to Ref. [22]

Grahic Jump Location
Fig. 4

Hertzian pressure distribution pH and pressure distribution pFT according to Eq. (6) as function of the radius r

Grahic Jump Location
Fig. 5

(a) Geometric parameters for the description of the contact behavior and (b) exemplary curve progression of the total contact force curve FFT (d)

Grahic Jump Location
Fig. 7

Sensor head with uniaxial microprobe

Grahic Jump Location
Fig. 8

Sensor circuit of the uniaxial microprobe

Grahic Jump Location
Fig. 10

Measured and calculated amplitude–frequency characteristic

Grahic Jump Location
Fig. 13

Possible application fields of the uniaxial microprobe considering the measurement results

Grahic Jump Location
Fig. 9

Experimental setup for the contact measurements

Grahic Jump Location
Fig. 6

Design of the uniaxial microprobe

Grahic Jump Location
Fig. 11

Phase shift between the sensor voltage and the actuator voltage for different measurement object materials

Grahic Jump Location
Fig. 12

Comparison of the simulated and the measured curves



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In