0
Research Papers

Effect of Reprocessing on the Rheological, Electrical, and Mechanical Properties of Polypropylene/Carbon Nanotube Composites

[+] Author and Article Information
Felicia Stan

Mem. ASME
Center of Excellence Polymer Processing,
Dunarea de Jos University of Galati,
47 Domneasca,
Galati 800 008, Romania
e-mail: felicia.stan@ugal.ro

Laurentiu Ionut Sandu

Center of Excellence Polymer Processing,
Dunarea de Jos University of Galati,
47 Domneasca,
Galati 800 008, Romania
e-mail: laurentiu.sandu@ugal.ro

Catalin Fetecau

Mem. ASME
Center of Excellence Polymer Processing,
Dunarea de Jos University of Galati,
47 Domneasca,
Galati 800 008, Romania
e-mail: catalin.feteca@ugal.ro

Razvan Rosculet

Center of Excellence Polymer Processing,
Dunarea de Jos University of Galati,
47 Domneasca,
Galati 800 008, Romania
e-mail: razvan.rosculet@ugal.ro

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received September 27, 2016; final manuscript received January 31, 2017; published online March 23, 2017. Editor: Jian Cao.

J. Micro Nano-Manuf 5(2), 021005 (Mar 23, 2017) (9 pages) Paper No: JMNM-16-1052; doi: 10.1115/1.4035955 History: Received September 27, 2016; Revised January 31, 2017

In this paper, polypropylene (PP) filled with different levels of multiwalled carbon nanotubes (MWCNTs) manufactured by injection molding was closed-loop recycled in order to investigate the effect of recycling and reprocessing on its rheological, electrical, and mechanical properties. It was found that the PP/MWCNT composites keep the flow performance after mechanical recycling. Moreover, the stress and strain at break increase after one reprocessing cycle (mechanical recycling and injection molding), whereas no statistically significant changes in electrical conductivity, Young's modulus, and tensile strength of the PP/MWCNT composites filled with 1, 3, and 5 wt.% were observed.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hayashi, T. , and Endo, M. , 2011, “ Carbon Nanotubes as Structural Material and Their Application in Composites,” Composites, Part B, 42(8), pp. 2151–2157. [CrossRef]
Kingston, C. , Zepp, R. , Andrady, A. , Boverhof, D. , Fehir, R. , Hawkins, D. , Roberts, J. , Sayre, P. , Shelton, B. , Sultan, Y. , Vejins, V. , and Wohlleben, W. , 2014, “ Release Characteristics of Selected Carbon Nanotube Polymer Composites,” Carbon, 68, pp. 33–57. [CrossRef]
Mueller, N. C. , and Nowack, B. , 2008, “ Exposure Modeling of Engineered Nanoparticles in the Environment,” Environ. Sci. Technol., 42(12), pp. 4447–4453. [CrossRef] [PubMed]
Bernhardt, E. S. , Colman, B. P. , Hochella, M. F., Jr. , Cardinale, B. J. , Nisbet, R. M. , Richardson, C. J. , and Yin, L. , 2010, “ An Ecological Perspective on Nanomaterial Impacts in the Environment,” J. Environ. Qual., 39(6), pp. 1954–1965. [CrossRef] [PubMed]
Manzetti, S. , and Anderson, O. , 2013, “ Carbon Nanotubes in Electronics, Background and Discussion for Waste-Handling Strategies,” Challenges, 4(1), pp. 75–84. [CrossRef]
Nowack, B. , David, R. M. , Fissan, H. , Morris, H. , Shatkin, J. A. , Stintz, M. , Zepp, R. , and Brouwer, D. , 2013, “ Potential Release Scenarios for Carbon Nanotubes Used in Composites,” Environ. Int., 59, pp. 1–11. [CrossRef] [PubMed]
Gao, J. L. , Liu, Y. H. , and Li, D. M. , 2011, “ Preparation and Properties of Recycled Polypropylene/Carbon Nanotube Composites,” Adv. Mater. Res., 279, pp. 106–110. [CrossRef]
Yasser, Z. , 2013, “ Recent Progress on Preparation and Properties of Nanocomposites From Recycled Polymers: A Review,” Waste Manage., 33(3), pp. 598–604. [CrossRef]
Remili, C. , Kaci, M. , Benhamida, A. , Bruzaud, S. , and Grohens, Y. , 2011, “ The Effects of Reprocessing Cycles on the Structure and Properties of Polystyrene/Cloisite15A Nanocomposites,” Polym. Degrad. Stab., 96(8), pp. 1064–1073. [CrossRef]
Ha, K. H. , 2012, “ Open-Loop Recycling to Apply Refrigerator Plastics From Post-Consumer Waste Polypropylene,” Mater. Des., 35, pp. 310–317. [CrossRef]
Hamad, K. , Kaseem, M. , and Deri, F. , 2013, “ Recycling of Waste From Polymer Materials: An Overview of the Recent Works,” Polym. Degrad. Stab., 98(12), pp. 2801–2812. [CrossRef]
Jin, H. , Gonzalez-Gutierrez, J. , Oblak, P. , Zupancic, B. , and Emri, I. , 2012, “ The Effect of Extensive Mechanical Recycling on the Properties of Low Density Polyethylene,” Polym. Degrad. Stab., 97(11), pp. 2262–2272. [CrossRef]
Alzerreca, M. , Paris, M. , Boyron, O. , Orditz, D. , Louarn, G. , and Correc, O. , 2015, “ Mechanical Properties and Molecular Structures of Virgin and Recycled HDPE Polymers Used in Gravity Sewer Systems,” Polym. Test., 46, pp. 1–8. [CrossRef]
Paul, B. K. , Panat, R. , Mastrangelo, C. , Kim, D. , and Johnson, D. , 2016, “ Manufacturing of Smart Goods: Current State, Future Potential, and Research Recommendations,” ASME J. Micro Nano-Manuf., 4(4), p. 044001. [CrossRef]
Stan, F. , Sandu, I. L. , and Fetecau, C. , 2014, “ Effect of Processing Parameters and Strain Rate on Mechanical Properties of Carbon Nanotube-Filled Polypropylene Nanocomposites,” Composites, Part B, 59, pp. 109–122. [CrossRef]
Nanocyl, 2010, “NanocylTM™ NC7000 Series-Product Datasheet-Thin Multi-Walled Carbon Nanotubes,” Nanocyl S. A., Sambreville, Belgium, accessed Sept. 18, 2012, http://www.nanocyl.com
Villmow, T. , Pegel, S. , Potschke, P. , and Wagenknecht, U. , 2008, “ Influence of Injection Molding Parameters on the Electrical Resistivity of Polycarbonate Filled With Multi-Walled Carbon Nanotubes,” Compos. Sci. Technol., 68(3–4), pp. 777–789. [CrossRef]
Hamad, K. , Kaseem, M. , and Deri, F. , 2011, “ Effect of Recycling on Rheological and Mechanical Properties of Poly Lactic Acid/Polystyrene Polymer Blend,” J. Mater. Sci., 46(9), pp. 3013–3019. [CrossRef]
Eken, A. E. , Tozzi, E. J. , Klingenberg, D. J. , and Bauhofer, W. , 2011, “ A Simulation Study on the Effects of Shear Flow on the Microstructure and Electrical Properties of Carbon Nanotube/Polymer Composites,” Polymer, 52(22), pp. 5178–5185. [CrossRef]
Liang, J. Z. , Chen, C. Y. , Zou, S. Y. , Tsui, C. P. , Tang, C. Y. , and Zhang, S. D. , 2015, “ Melt Flow Behavior of Polypropylene Composites Filled With Multi-Walled Carbon Nanotubes During Extrusion,” Polym. Test., 45, pp. 41–46. [CrossRef]
Morrison, F. A. , 2001, Understanding Rheology, Oxford University Press, New York, Chap. 10.
Kim, H. , Abdala, A. A. , and Macosko, C. W. , 2010, “ Graphene/Polymer Nanocomposites,” Macromolecules, 43(16), pp. 6515–6530. [CrossRef]
Bauhofer, W. , and Kovacs, J. Z. , 2009, “ A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites,” Compos. Sci. Technol., 69(10), pp. 1486–1498. [CrossRef]
Bernal, R. V. , 2013, “ Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites With Potential Application to Nanometric Electronic Devices,” J. Electr. Comput. Eng., p. 179538.
Taherianz, R. , 2014, “ Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon Nanocomposites,” ECS J. Solid State Sci. Technol., 3(6), pp. 26–38. [CrossRef]
Carter, R. L. B. , 2008, “ Development and Modeling of Electrically Conductive Reins for Fuel Cell Bipolar Plate Applications,” Ph.D. thesis, Michigan University, Ann Arbor, MI.
Aguilar, J. O. , 2010, “ Influence of Carbon Nanotube Clustering on the Electrical Conductivity of Polymer Composite Films,” eXPRESS Polym. Lett., 4(5), pp. 292–299. [CrossRef]
Ha, M. L. P. , Grady, B. P. , Lolli, G. , Resasco, D. E. , Balzano, L. , and Ford, W. T. , 2007, “ Composites of Single-Walled Carbon Nanotubes and Styrene-Isoprene Copolymer Latices,” Macromol. Chem. Phys., 208(5), pp. 446–456. [CrossRef]
Grossiord, N. , Kivit, P. J. J. , Loos, J. , Meuldijk, J. , Kyrylyuk, A. V. , van der Schoot, P. , and Koning, C. E. , 2008, “ On the Influence of the Processing Conditions on the Performance of Electrically Conductive Carbon Nanotube/Polymer Nanocomposites,” Polymer, 49(12), pp. 2866–2872. [CrossRef]
Yan, K. Y. , Xue, Q. Z. , Zheng, Q. B. , and Hao, L. Z. , 2007, “ The Interface Effect of the Effective Electrical Conductivity of Carbon Nanotube Composites,” Nanotechnology, 18(25), p. 225705.
Enomoto, K. , Yasuhara, T. , Ohtake, N. , and Kato, K. , 2003, “ Injection Molding of Polystyrene Matrix Composites Filled With Vapor Grown Carbon Fiber,” JSME Int. J., Ser. A, 46(3), pp. 353–358. [CrossRef]
Tiusanen, J. , Vlasveld, D. , and Vuorinen, J. , 2012, “ Review on the Effects of Injection Moulding Parameters on the Electrical Resistivity of Carbon Nanotube Filled Polymer Parts,” Compos. Sci. Technol., 72(14), pp. 1741–1752. [CrossRef]
Taherian, R. , Nozad, A. , and Hadianfard, M. J. , 2011, “ The Effect of Mold Pressing Pressure and Composition on Properties of Nanocomposite Bipolar Plate for Proton Exchange Membrane Fuel Cell,” Mater. Des., 32(7), pp. 3883–3892. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic representation of the active cell for resistivity measurement

Grahic Jump Location
Fig. 2

Melt shear viscosity curves for PP/MWCNT composites with 5 wt.%. (a) PP/MWCNT with 5 wt.% (R0) and (b) PP/MWCNT with 5 wt.% (R1).

Grahic Jump Location
Fig. 3

Dependence of melt shear viscosity on temperature for an apparent shear rate of 1000 s−1. (a) PP/MWCNT (R0) and (b) PP/MWCNT (R1).

Grahic Jump Location
Fig. 4

Relationship between apparent shear viscosity and MWCNTs at 200 °C. (a) PP/MWCNT (R0) and (b) PP/MWCNT (R1).

Grahic Jump Location
Fig. 5

Melt shear viscosity for: (a) virgin and (b) reprocessed PP/MWCNT composites. (a) PP/MWCNT with 5 wt.% (R0) and (b) PP/MWCNT with 5 wt.% (R1).

Grahic Jump Location
Fig. 6

Master curves for PP/MWCNT composites with: (a) 1 wt.% and (b) 5 wt.%

Grahic Jump Location
Fig. 7

SEM image for PP/MWCNT with 1 wt.%: (a) powder from mechanical recycling and (b) injection-molded sample after first reprocessing cycle

Grahic Jump Location
Fig. 8

SEM image for PP/MWCNT with 5 wt.%: (a) powder from mechanical recycling and (b) injection-molded sample after first reprocessing cycle

Grahic Jump Location
Fig. 9

Stress–strain curves for reprocessed PP/MWCNT composite at 50 mm/min

Grahic Jump Location
Fig. 10

Stress–strain curves for PP/MWCNT composites with: (a) 1 wt.% and (b) 5 wt.% at 50 mm/min

Grahic Jump Location
Fig. 11

Effect of reprocessing and MWCNT weight percentage on the mechanical properties of PP/MWCNT composites at 50 mm/min

Grahic Jump Location
Fig. 12

Effect of variables on the mechanical properties of reprocessed PP/MWCNT composites

Grahic Jump Location
Fig. 13

Resistivity of: (a) virgin and (b) reprocessed PP/MWCNT composites

Grahic Jump Location
Fig. 14

Comparison between resistivity of virgin and reprocessed PP/MWCNT composites

Grahic Jump Location
Fig. 15

DC electrical conductivity as a function of MWCNT weight percentage

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In