Research Papers

Self-Assembled Axisymmetric Microscale Periodic Wrinkles on Elastomer Fibers

[+] Author and Article Information
Jian Geng

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99164
e-mail: jian.geng@wsu.edu

Md. Taibur Rahman

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99164
e-mail: mdtaibur.rahman@wsu.edu

Rahul Panat

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99164
e-mail: rahul.panat@wsu.edu

Lei Li

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99164
e-mail: lei.li2@wsu.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received September 25, 2016; final manuscript received February 15, 2017; published online March 24, 2017. Assoc. Editor: Nicholas Fang.

J. Micro Nano-Manuf 5(2), 021006 (Mar 24, 2017) (6 pages) Paper No: JMNM-16-1050; doi: 10.1115/1.4036112 History: Received September 25, 2016; Revised February 15, 2017

In this work, we demonstrate a novel scalable microscale manufacturing technique that uses structural self-assembly to create controlled ring-shaped periodic perturbations in the form of wrinkles on a polymer fiber concentric to the fiber axis. The wrinkles are generated by stretching a soft polymer fiber made of polydimethylsiloxane (PDMS) to strains ranging from 10% to 200%, followed by an ultraviolet (UV)/ozone exposure to create a hard SiOx film over the soft fiber before releasing the fiber strain. We identified the key variables controlling the wavelength of the microscale wrinkles. Possible applications of the method in optical and other devices are discussed.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Gao, H. , 1994, “ Some General Properties of Stress-Driven Surface Evolution in a Heteroepitaxial Thin Film Structure,” J. Mech. Phys. Solids, 42(5), pp. 741–772. [CrossRef]
Panat, R. , Hsia, K. J. , and Cahill, D. G. , 2005, “ Evolution of Surface Waviness in Thin Films Via Volume and Surface Diffusion,” J. Appl. Phys., 97(1), p. 013521. [CrossRef]
Kim, P. , Abkarian, M. , and Stone, H. A. , 2011, “ Hierarchical Folding of Elastic Membranes Under Biaxial Compressive Stress,” Nat. Mater., 10(12), pp. 952–957. [CrossRef] [PubMed]
Moon, M.-W. , Lee, S. H. , Sun, J.-Y. , Oh, K. H. , Vaziri, A. , and Hutchinson, J. W. , 2007, “ Wrinkled Hard Skins on Polymers Created by Focused Ion Beam,” Proc. Natl. Acad. Sci., 104(4), pp. 1130–1133. [CrossRef]
Stafford, C. M. , Harrison, C. , Beers, K. L. , Karim, A. , Amis, E. J. , VanLandingham, M. R. , Kim, H.-C. , Volksen, W. , Miller, R. D. , and Simonyi, E. E. , 2004, “ A Buckling-Based Metrology for Measuring the Elastic Moduli of Polymeric Thin Films,” Nat. Mater., 3(8), pp. 545–550. [CrossRef] [PubMed]
Lu, C. , Möhwald, H. , and Fery, A. , 2007, “ A Lithography-Free Method for Directed Colloidal Crystal Assembly Based on Wrinkling,” Soft Matter, 3(12), pp. 1530–1536. [CrossRef]
Choi, W. M. , Song, J. Z. , Khang, D. Y. , Jiang, H. Q. , Huang, Y. Y. , and Rogers, J. A. , 2007, “ Biaxially Stretchable “Wavy” Silicon Nanomembranes,” Nano Lett., 7(6), pp. 1655–1663. [CrossRef] [PubMed]
Yu, C. , Masarapu, C. , Rong, J. , Wei, B. , and Jiang, H. , 2009, “ Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms,” Adv. Mater., 21(47), pp. 4793–4797. [CrossRef] [PubMed]
Yu, C. , O'Brien, K. , Zhang, Y.-H. , Yu, H. , and Jiang, H. , 2010, “ Tunable Optical Gratings Based on Buckled Nanoscale Thin Films on Transparent Elastomeric Substrates,” Appl. Phys. Lett., 96(4), p. 041111. [CrossRef]
Huck, W. T. , Bowden, N. , Onck, P. , Pardoen, T. , Hutchinson, J. W. , and Whitesides, G. M. , 2000, “ Ordering of Spontaneously Formed Buckles on Planar Surfaces,” Langmuir, 16(7), pp. 3497–3501. [CrossRef]
Bowden, N. , Brittain, S. , Evans, A. G. , Hutchinson, J. W. , and Whitesides, G. M. , 1998, “ Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer,” Nature, 393, pp. 146–149. [CrossRef]
Song, J. , Jiang, H. , Liu, Z. J. , Khang, D. Y. , Huang, Y. , Rogers, J. A. , Lu, C. , and Koh, C. G. , 2008, “ Buckling of a Stiff Thin Film on a Compliant Substrate in Large Deformation,” Int. J. Solids Struct., 45(10), pp. 3107–3121. [CrossRef]
Lacour, S. P. , Jones, J. , Wagner, S. , Li, T. , and Suo, Z. G. , 2005, “ Stretchable Interconnects for Elastic Electronic Surfaces,” Proc. IEEE, 93(8), pp. 1459–1467. [CrossRef]
Kim, K. S. , Zhao, Y. , Jang, H. , Lee, S. Y. , Kim, J. M. , Kim, K. S. , Ahn, J. H. , Kim, P. , Choi, J. Y. , and Hong, B. H. , 2009, “ Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,” Nature, 457(7230), pp. 706–710. [CrossRef] [PubMed]
Chun, K. Y. , Oh, Y. , Rho, J. , Ahn, J. H. , Kim, Y. J. , Choi, H. R. , and Baik, S. , 2010, “ Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver,” Nat. Nanotechnol., 5(12), pp. 853–857. [CrossRef] [PubMed]
Sekitani, T. , Noguchi, Y. , Hata, K. , Fukushima, T. , Aida, T. , and Someya, T. , 2008, “ A Rubberlike Stretchable Active Matrix Using Elastic Conductors,” Science, 321(5895), pp. 1468–1472. [CrossRef] [PubMed]
Hansen, T. S. , West, K. , Hassager, O. , and Larsen, N. B. , 2007, “ Highly Stretchable and Conductive Polymer Material Made From Poly (3,4-Ethylenedioxythiophene) and Polyurethane Elastomers,” Adv. Funct. Mater., 17(16), pp. 3069–3073. [CrossRef]
Siegel, A. C. , Bruzewicz, D. A. , Weibel, D. B. , and Whitesides, G. M. , 2007, “ Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(Dimethylsiloxane),” Adv. Mater., 19(5), pp. 727–733. [CrossRef]
Yu, C. J. , and Jiang, H. Q. , 2010, “ Forming Wrinkled Stiff Films on Polymeric Substrates at Room Temperature for Stretchable Interconnects Applications,” Thin Solid Films, 519(2), pp. 818–822. [CrossRef]
Yu, C. , Wang, Z. , Yu, H. , and Jiang, H. , 2009, “ A Stretchable Temperature Sensor Based on Elastically Buckled Thin Film Devices on Elastomeric Substrates,” Appl. Phys. Lett., 95(14), p. 141912. [CrossRef]
Chen, X. , and Hutchinson, J. W. , 2004, “ Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates,” ASME J. Appl. Mech., 71(5), pp. 597–603. [CrossRef]
Jin, L. H. , Takei, A. , and Hutchinson, J. W. , 2015, “ Mechanics of Wrinkle/Ridge Transitions in Thin Film/Substrate Systems,” J. Mech. Phys. Solids, 81, pp. 22–40. [CrossRef]
Song, J. , Jiang, H. , Choi, W. , Khang, D. , Huang, Y. , and Rogers, J. , 2008, “ An Analytical Study of Two-Dimensional Buckling of Thin Films on Compliant Substrates,” J. Appl. Phys., 103(1), p. 014303. [CrossRef]
Jiang, H. Q. , Khang, D. Y. , Song, J. Z. , Sun, Y. G. , Huang, Y. G. , and Rogers, J. A. , 2007, “ Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports,” Proc. Natl. Acad. Sci., 104(40), pp. 15607–15612. [CrossRef]
Zhao, Y. , Huang, W. M. , and Fu, Y. Q. , 2011, “ Formation of Micro/Nano-Scale Wrinkling Patterns Atop Shape Memory Polymers,” J. Micromech. Microeng., 21(6), p. 067007. [CrossRef]
Izawa, H. , Okuda, N. , Ifuku, S. , Morimoto, M. , Saimoto, H. , and Rojas, O. J. , 2015, “ Bio‐Based Wrinkled Surfaces Harnessed From Biological Design Principles of Wood and Peroxidase Activity,” ChemSusChem, 8(22), pp. 3892–3896. [CrossRef] [PubMed]
Cao, Y.-P. , Li, B. , and Feng, X.-Q. , 2012, “ Surface Wrinkling and Folding of Core–Shell Soft Cylinders,” Soft Matter, 8(2), pp. 556–562. [CrossRef]
Cao, G. , Chen, X. , Li, C. , Ji, A. , and Cao, Z. , 2008, “ Self-Assembled Triangular and Labyrinth Buckling Patterns of Thin Films on Spherical Substrates,” Phys. Rev. Lett., 100(3), p. 036102. [CrossRef] [PubMed]
Liu, Z. , Fang, S. , Moura, F. , Ding, J. , Jiang, N. , Di, J. , Zhang, M. , Lepró, X. , Galvão, D. , and Haines, C. , 2015, “ Hierarchically Buckled Sheath-Core Fibers for Superelastic Electronics Sensors, and Muscles,” Science, 349(6246), pp. 400–404. [CrossRef] [PubMed]
Lin, P. C. , Vajpayee, S. , Jagota, A. , Hui, C. Y. , and Yang, S. , 2008, “ Mechanically Tunable Dry Adhesive From Wrinkled Elastomers,” Soft Matter, 4(9), pp. 1830–1835. [CrossRef]
Ouyang, M. , Yuan, C. , Muisener, R. J. , Boulares, A. , and Koberstein, J. T. , 2000, “ Conversion of Some Siloxane Polymers to Silicon Oxide by UV/Ozone Photochemical Processes,” Chem. Mater., 12(6), pp. 1591–1596. [CrossRef]
Efimenko, K. , Rackaitis, M. , Manias, E. , Vaziri, A. , Mahadevan, L. , and Genzer, J. , 2005, “ Nested Self-Similar Wrinkling Patterns in Skins,” Nat. Mater., 4(4), pp. 293–297. [CrossRef] [PubMed]
Borysiak, M. D. , Bielawski, K. S. , Sniadecki, N. J. , Jenkel, C. F. , Vogt, B. D. , and Posner, J. D. , 2013, “ Simple Replica Micromolding of Biocompatible Styrenic Elastomers,” Lab Chip, 13(14), pp. 2773–2784. [CrossRef] [PubMed]
Cerda, E. , and Mahadevan, L. , 2003, “ Geometry and Physics of Wrinkling,” Phys. Rev. Lett., 90(7), p. 074302. [CrossRef] [PubMed]
Genzer, J. , and Groenewold, J. , 2006, “ Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization,” Soft Matter, 2(4), pp. 310–323. [CrossRef]
Johnston, I. , McCluskey, D. , Tan, C. , and Tracey, M. , 2014, “ Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering,” J. Micromech. Microeng., 24(3), p. 035017. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of the wrinkle formation process: (a)–(c) case where the fiber does not rotate during UV exposure and (d)–(f) case where the fiber rotates during UV exposure

Grahic Jump Location
Fig. 2

Processes of wet-etching method of flat PDMS substrates: (a)–(c) schematics of the wet etching process and (d) image of an etched PDMS planar substrate

Grahic Jump Location
Fig. 3

Images of PDMS fibers with axisymmetric wrinkles fabricated using the micromanufacturing method proposed in this study. (a) Optical image of wrinkled fiber at different magnifications showing wrinkle wavelength and amplitude. (b) Optical image showing the boundary between the fiber exposed to UV and that the part not exposed to UV during the stretched state. We observe the wrinkle formation in the area exposed to UV. (c) SEM micrographs of the fiber at different magnifications showing the axisymmetric wrinkle morphology. Cracks on the wrinkle surface can also be observed. For fibers shown in images (a)–(c), the entire fiber circumference was exposed to the UV light during the wrinkle fabrication. (d) SEM micrographs of the fiber at different magnifications showing the wrinkle morphology on one side of the fiber. Only one side of the fiber circumference was exposed to the UV light during the fabrication.

Grahic Jump Location
Fig. 4

Relationships of formed wrinkles with forming conditions. (a) Wavelength of the wrinkles (λ) as a function of UV exposure time (min) for a 0.4 mm diameter PDMS fiber at different prestrain levels. (b) Relationship between prestrain (%) and λ for the case when fibers were not rotated during UV exposure and (c) when fibers were rotated during UV exposure. (d) Wavelength as a function of UV exposure time for different fiber diameters, (e) thickness of the SiOx layer, hf (μm) as a function of the UV exposure time (min) for different prestrain for a fiber with 0.4 mm diameter. The error bars represent one standard deviation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In