Research Papers

Fast Fabrication of Superhydrophobic Titanium Alloy as Antibacterial Surface Using Nanosecond Laser Texturing

[+] Author and Article Information
Deepak Patil

Department of Mechanical Engineering,
Indian Institute of Technology Delhi,
New Delhi 110016, India
e-mail: deepakpatil3030@gmail.com

S. Aravindan

Department of Mechanical Engineering,
Indian Institute of Technology Delhi,
New Delhi 110016, India
e-mail: aravindan@mech.iitd.ac.in

Mishi Kaushal Wasson

Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi,
New Delhi 110016, India
e-mail: mishi.wasson@gmail.com

Vivekanandan P.

Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi,
New Delhi 110016, India
e-mail: vperumal@bioschool.iitd.ac.in

P. V. Rao

Department of Mechanical Engineering,
Indian Institute of Technology Delhi,
New Delhi 110016, India
e-mail: pvrao@mech.iitd.ernet.in

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received April 29, 2017; final manuscript received September 15, 2017; published online December 14, 2017. Assoc. Editor: Jian Cao.

J. Micro Nano-Manuf 6(1), 011002 (Dec 14, 2017) (8 pages) Paper No: JMNM-17-1019; doi: 10.1115/1.4038093 History: Received April 29, 2017; Revised September 15, 2017

The method for fast fabrication of superhydrophobic surfaces was proposed to resist the formation of biofilm of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for orthopedic and dental implants. Laser beam machining with nanosecond pulsed laser (Nd:YAG) was used to fabricate pit structure on Grade-5 Ti–6Al–4V alloy followed by annealing (at 300 °C with different time scales) in order to reduce the transition time from hydrophilic to superhydrophobic surface generation. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) techniques were used to characterize the textured samples. The surface wettability of plain and textured samples was measured by the sessile drop method using goniometer. The biofilm formation was qualitatively and quantitatively evaluated by FE-SEM and crystal violet binding assay, respectively. The biofilm formation was observed on plain (hydrophilic) surface for both the types of bacteria, whereas significantly less biofilm formation was observed on the laser textured (superhydrophobic) surfaces. The proposed method helps in reducing the risk of infection associated with implants without using cytotoxic bactericidal agents.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Kulkarni, M. , Mazare, A. , Schmuki, P. , and Iglic, A. , 2014, Nanomedicine, One Central Press, Manchester, UK, Chap. 5.
Elias, C. N. , Lima, J. H. C. , Valiev, R. , and Meyers, M. A. , 2008, “ Biomedical Applications of Titanium and Its Alloys,” J. Miner. Met. Mater. Soc., 60(3), pp. 46–49. [CrossRef]
Rack, H. J. , and Qazi, J. I. , 2006, “ Titanium Alloys for Biomedical Applications,” Mater. Sci. Eng., C, 26(8), pp. 1269–1277. [CrossRef]
Nablo, B. J. , Rothrock, A. R. , and Schoenfisch, M. H. , 2005, “ Nitric Oxide-Releasing Sol–Gels as Antibacterial Coatings for Orthopedic Implants,” Biomaterials, 26(8), pp. 917–924. [CrossRef] [PubMed]
Campoccia, D. , Montanaro, L. , and Renata, C. , 2006, “ The Significance of Infection Related to Orthopedic Devices and Issues of Antibiotic Resistance,” Biomaterials, 27(11), pp. 2331–2339. [CrossRef] [PubMed]
Lichter, J. A. , Van Vliet, K. J. , and Rubner, M. F. , 2009, “ Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform,” Macromolecules, 42(22), pp. 8573–8586. [CrossRef]
Zhao, L. , Wang, H. , Huo, K. , Cui, L. , Zhang, W. , Ni, H. , Zhang, Y. , Wu, Z. , and Chu, P. K. , 2011, “ Antibacterial Nano-Structured Titania Coating Incorporated With Silver Nanoparticles,” Biomaterials, 32(24), pp. 5706–5716. [CrossRef] [PubMed]
Hasan, J. , Crawford, R. J. , and Ivanova, E. P. , 2013, “ Antibacterial Surfaces: The Quest for a New Generation of Biomaterials,” Trends Biotechnol., 31(5), pp. 295–304. [CrossRef] [PubMed]
Bruno, C. A. , and Dufrene, Y. F. , 2002, “ In Situ Characterization of Bacterial Extracellular Polymeric Substances by AFM,” Colloids Surf. B, 23(2–3), pp. 173–182.
Donlan, R. M. , and Costerton, J. M. , 2002, “ Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms,” Clin. Microbiol. Rev., 15(2), pp. 167–193. [CrossRef] [PubMed]
Moreira, J. M. R. , Gomes, L. C. , Whitehead, K. A. , Lynch, S. , Tetlow, L. A. , and Mergulhão, F. J. , 2017, “ Effect of Surface Conditioning With Cellular Extracts on Escherichia coli Adhesion and Initial Biofilm Formation,” Food Bioprod. Process., 104, pp. 1–12. [CrossRef]
Lorite, G. S. , Rodrigues, C. M. , de Souza, A. A. , Kranz, C. , Mizaikoff, B. , and Cotta, M. A. , 2011, “ The Role of Conditioning Film Formation and Surface Chemical Changes on Xylella fastidiosa Adhesion and Biofilm Evolution,” J. Colloid Interface Sci., 359(1), pp. 289–295. [CrossRef] [PubMed]
Beranová, J. , Polonskyi, O. , Shelemin, A. , Kylián, O. , Choukourov, A. , Slavínská, D. , and Biederman, H. , 2015, “ Antibacterial Nanocomposite Coatings Produced by Means of Gas Aggregation Source of Silver Nanoparticles,” Surf. Coat. Technol., 294, pp. 225–230.
Hajipour, M. J. , Fromm, K. M. , Ashkarran, A. A. , Aberasturi, D. J. , Larramendi, I. R. , Rojo, T. , Serpooshan, V. , Parak, W. J. , and Mahmoudi, M. , 2012, “ Antibacterial Properties of Nanoparticles,” Trends Biotechnol., 30(10), pp. 499–511. [CrossRef] [PubMed]
Malshe, A. , Rajurkar, K. , Samant, A. , Hansen, H. N. , Bapat, S. , and Jiang, W. , 2013, “ Bio-Inspired Functional Surfaces for Advanced Applications,” CIRP Ann. - Manuf. Technol., 62(2), pp. 607–628. [CrossRef]
Dalby, M. J. , Childs, S. , Riehle, M. O. , Johnstone, H. J. H. , Affrossman, S. , and Curtis, A. S. G. , 2013, “ Fibroblast Reaction to Island Topography: Changes in Cytoskeleton and Morphology With Time,” Biomaterials, 24(6), pp. 927–935. [CrossRef]
Cao, J. , Yuan, W. , Pei, Z. J. , Davis, T. , Cui, Y. , and Beltran, M. , 2009, “ A Preliminary Study of the Effect of Surface Texture on Algae Cell Attachment for a Mechanical-Biological Energy Manufacturing System,” ASME J. Manuf. Sci. Eng., 131(6), p. 064505. [CrossRef]
Lu, N. , Zhang, W. , Weng, Y. , Chen, X. , Cheng, Y. , and Zhou, P. , 2016, “ Fabrication of PDMS Surfaces With Micro Patterns and the Effect of Pattern Sizes on Bacteria Adhesion,” Food Control, 68, pp. 344–351. [CrossRef]
Fadeeva, E. , Truong, V. K. , Stiesch, M. , Chichkov, B. N. , Crawford, R. J. , Wang, J. , and Ivanova, E. P. , 2011, “ Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation,” Langmuir, 27(6), pp. 3012–3019. [CrossRef] [PubMed]
Falde, E. J. , Yohe, S. T. , Colson, Y. L. , Grinstaff, M. W. , and Yohe, S. T. , 2016, “ Superhydrophobic Materials for Biomedical Applications,” Biomaterials, 104, pp. 87–103. [CrossRef] [PubMed]
Truong, V. K. , Rundell, S. , Lapovok, R. , Estrin, Y. , Wang, J. Y. , Berndt, C. C. , Barnes, D. G. , Fluke, C. J. , Crawford, R. J. , and Ivanova, E. P. , 2009, “ Effect of Ultrafine-Grained Titanium Surfaces on Adhesion of Bacteria,” Appl. Microbiol. Biotechnol., 83(5), pp. 925–937. [CrossRef] [PubMed]
Liu, X. , Chu, P. K. , and Ding, C. , 2004, “ Surface Modification of Titanium, Titanium Alloys and Related Materials for Biomedical Applications,” Mater. Sci. Eng., R, 47(3–4), pp. 49–121. [CrossRef]
Panacek, A. , Kvıtek, L. , Prucek, R. , Kolar, M. , Vecerova, R. , Pizurova, N. , Sharma, V. K. , Nevecna, T. , and Zboril, R. , 2006, “ Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity,” J. Phys. Chem. B, 110(33), pp. 16248–16253. [CrossRef] [PubMed]
Truong, V. K. , Webb, H. K. , Fadeeva, E. , Chichkov, B. N. , Wu, A. H. F. , Lamb, R. , Crawford, R. J. , and Ivanova, E. P. , 2012, “ Air-Directed Attachment of Coccoid Bacteria to the Surface of Superhydrophobic Lotus-Like Titanium,” J. Bioadhes. Biofilm Res., 28(6), pp. 539–550. [CrossRef]
Ma, J. , Sun, Y. , Gleichauf, K. , Lou, J. , and Li, Q. , 2011, “ Nanostructure on Taro Leaves Resists Fouling by Colloids and Bacteria Under Submerged Conditions,” Langmuir, 27(16), pp. 10035–10040. [CrossRef] [PubMed]
Hasan, J. , Webb, H. K. , Truong, V. K. , Pogodin, S. , Baulin, V. A. , Watson, G. S. , Watson, J. A. , Crawford, R. J. , and Ivanova, E. P. , 2013, “ Selective Bactericidal Activity of Nanopatterned Superhydrophobic Cicada Psaltoda Claripennis Wing Surfaces,” Environ. Biotechnol., 97(20), pp. 9257–9262. [CrossRef]
Xue, C. , Jia, S. , Zhang, J. , and Ma, J. , 2010, “ Large-Area Fabrication of Superhydrophobic Surfaces for Practical Applications: An Overview,” Sci. Technol. Adv. Mater., 11(3), pp. 1–15. http://iopscience.iop.org/article/10.1088/1468-6996/11/3/033002/meta
Guo, P. , Lu, Y. , Ehmann, K. F. , and Cao, J. , 2014, “ Generation of Hierarchical Micro Structures for Anisotropic Wetting by Elliptical Vibration Cutting,” CIRP Ann. - Manuf. Technol., 63(1), pp. 553–556. [CrossRef]
Han, P. , Kim, J. , Ehmann, K. F. , and Cao, J. , 2013, “ Laser Surface Texturing of Medical Needles for Friction Control,” Int. J. Mechatron. Manuf. Syst., 6(3), pp. 215–228.
Velasquez, T. , Peidong, H. , Cao, J. , and Ehman, K. F. , 2013, “ Feasibility of Laser Surface Texturing for Friction Reduction in Surgical Blades,” ASME Paper No. MSEC2013-1193.
Knowles, M. R. H. , Rutterford, G. , Karnakis, D. , and Ferguson, A. , 2007, “ Micro-Machining of Metals, Ceramics and Polymers Using Nanosecond Lasers,” Int. J. Adv. Manuf. Technol., 33(1), pp. 95–102. [CrossRef]
Jagdheesh, R. , García-Ballesteros, J. J. , and Ocana, J. L. , 2016, “ One-Step Fabrication of Near Superhydrophobic Aluminum Surface by Nanosecond Laser Ablation,” Appl. Surf. Sci., 374, pp. 2–11. [CrossRef]
Long, J. , Zhong, M. , Zhang, H. , and Fan, P. , 2015, “ Superhydrophilicity to Superhydrophobicity Transition of Picosecond Laser Microstructured Aluminum in Ambient Air,” J. Colloid Interface Sci., 441, pp. 1–9. [CrossRef] [PubMed]
Kietzig, A. M. , Hatzikiriakos, S. G. , and Englezos, P. , 2009, “ Patterned Superhydrophobic Metallic Surfaces,” Langmuir, 25(8), pp. 4821–4827. [CrossRef] [PubMed]
Duong, V. T. , Dunn, A. , Wasley, T. J. , Kay, R. W. , Stringer, J. , Smith, P. J. , Connaughton, C. , and Shephard, J. D. , 2015, “ Nanosecond Laser Textured Superhydrophobic Metallic Surfaces and Their Chemical Sensing Applications,” Appl. Surf. Sci., 357(Part A), pp. 248–254.
Rukosuyev, M. V. , Lee, J. , Cho, S. J. , Lim, G. , and Jun, M. B. G. , 2014, “ One-Step Fabrication of Superhydrophobic Hierarchical Structures by Femtosecond Laser Ablation,” Appl. Surf. Sci., 313, pp. 411–417. [CrossRef]
Kumar, N. , Prakash, S. , and Kumar, S. , 2016, “ Studies of Laser Textured Ti-6Al-4V Wettability for Implants,” IOP Conf. Ser.: Mater. Sci. Eng., 149(1), pp. 1–6.
Cunha, A. , Elie, A. M. , Plawinski, L. , Serro, A. P. , Rego, A. M. B. , Almeida, A. , Urdaci, M. C. , Durrieu, M. C. , and Vilar, R. , 2016, “ Femtosecond Laser Surface Texturing of Titanium as a Method to Reduce the Adhesion of Staphylococcus aureus and Biofilm Formation,” Appl. Surf. Sci., 360(Part B), pp. 485–493. [CrossRef]
Stepanovic, S. , Cirkovic, I. , Ranin, L. , and Svabic-Vlahovic, M. , 2004, “ Biofilm Formation by Salmonella Spp. and Listeria Monocytogenes on Plastic Surface,” Lett. Appl. Microbiol., 38(5), pp. 428–432. [CrossRef] [PubMed]
Moradi, S. , Kamal, S. , Englezos, P. , and Hatzikiriakos, S. G. , 2013, “ Femtosecond Laser Irradiation of Metallic Surfaces: Effects of Laser Parameters on Superhydrophobicity,” Nanotechnology, 24(41), pp. 1–12. [CrossRef]
Cassie, A. B. D. , and Baxter, S. , 1944, “ Wettability of Porous Surfaces,” Trans. Faraday Soc., 40, pp. 546–551. [CrossRef]
Mei, S. , Wang, H. , Wang, W. , Tong, L. , Pan, H. , Ruan, C. , Ma, Q. , Liu, M. , Yang, H. , Zhang, L. , Cheng, Y. , Zhang, Y. , Zhao, L. , and Chu, P. K. , 2014, “ Antibacterial Effects and Biocompatibility of Titanium Surfaces With Graded Silver Incorporation in Titania Nanotubes,” Biomaterials, 35(14), pp. 4255–4265. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 8

Representative SEM images of S. aureus tested on (a) plain Ti–6Al–4V, (b) 40 μm, (c) 60 μm, and (d) 80μm samples

Grahic Jump Location
Fig. 7

Representative SEM images of E. coli tested on (a) plain Ti–6Al–4V, (b) 40 μm, (c) 60 μm, and (d) 80 μm samples

Grahic Jump Location
Fig. 6

Mechanism of generation of superhydrophobic surface after annealing

Grahic Jump Location
Fig. 5

XRD analysis of (a) plain and (b) annealed samples

Grahic Jump Location
Fig. 4

Graphical representation of variation of WDCA with annealing time

Grahic Jump Location
Fig. 3

Images of WDCA after annealing for 30 min (a)–(c), 60 min (d)–(f), 90 min (g)–(i), and 120 min (j)–(l) on 40 μm, 60 μm, and 80 μm samples

Grahic Jump Location
Fig. 2

WDCA versus pits spacing

Grahic Jump Location
Fig. 1

SEM images of (a) Ti–6Al–4V plain surface, (b) laser-induced pit structures of 40μm, (c) 60 μm, and (d) 80 μm spacing on Ti–6Al–4V

Grahic Jump Location
Fig. 9

OD (OD600 nm) of resolubilized crystal violet dye collected from cultured samples



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In