Research Papers

A Long Wavelength Model for Manufacturing of Continuous Metal Microwires by Thermal Fiber Drawing From a Preform

[+] Author and Article Information
Jingzhou Zhao

Department of Mechanical and
Aerospace Engineering,
University of California, Los Angeles,
404 Westwood Plaza,
Los Angeles, CA 90095;
Department of Mechanical Engineering,
Western New England University,
1215 Wilbraham Road,
Springfield, MA 01119
e-mails: Jingzhou.zhao@ucla.edu;

Xiaochun Li

Department of Mechanical and
Aerospace Engineering,
University of California, Los Angeles,
404 Westwood Plaza,
Los Angeles, CA 90095
e-mail: xcli@seas.ucla.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received March 25, 2017; final manuscript received November 1, 2017; published online December 14, 2017. Assoc. Editor: Takashi Matsumura.

J. Micro Nano-Manuf 6(1), 011003 (Dec 14, 2017) (9 pages) Paper No: JMNM-17-1015; doi: 10.1115/1.4038433 History: Received March 25, 2017; Revised November 01, 2017

Thermal drawing from a preform recently emerges as a scalable manufacturing method for the high volume production of continuous metal microwires for numerous applications. However, no model can yet satisfactorily provide effective understanding of core diameter and continuity from process parameters and material properties during thermal drawing. In this paper, a long wavelength model is derived to describe the dynamics of a molten metal micro-jet entrained within an immiscible, viscous, nonlinear free surface extensional flow. The model requires numerical data (e.g., drawing force and cladding profile) be measured in real time. Examination of the boundary conditions reveals that the diameter control mechanism is essentially volume conservation. The flow rate of molten metal is controlled upstream while the flow velocity is controlled downstream realized by solidification of the molten metal. The dynamics of the molten metal jet are found to be dominated by interfacial tension, stress in the cladding, and pressure in the molten metal. Taylor's conical fluid interface solution (Taylor, 1966, “Conical Free Surfaces and Fluid Interfaces,” Applied Mechanics, Springer, Berlin, pp. 790–796.) is found to be a special case of this model. A dimensionless capillary number Ca=2Fa/γA(0) is suggested to be used as the indicator for the transition from continuous mode (i.e., viscous stress dominating) to dripping mode (i.e., interfacial tension dominating). Experimental results showed the existence of a critical capillary number Cacr, above which continuous metal microwires can be produced, providing the first ever quantitative predictor of the core continuity during preform drawing of metal microwires.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Tao, G. , Stolyarov, A. M. , and Abouraddy, A. F. , 2012, “ Multimaterial Fibers,” Int. J. Appl. Glass Sci., 3(4), pp. 349–368. [CrossRef]
Ma, Z. , Hong, Y. , Ding, S. , Zhang, M. , Hossain, M. , and Su, M. , 2011, “ Three-Dimensional Micro/Nanomaterials Generated by Fiber-Drawing Nanomanufacturing,” Three-Dimensional Nanoarchitectures, W. Zhou and Z. Wang , eds., Springer, New York, pp. 117–132. [CrossRef]
Orf, N. D. , Shapira, O. , Sorin, F. , Danto, S. , Baldo, M. A. , Joannopoulos, J. D. , and Fink, Y. , 2011, “ Fiber Draw Synthesis,” Proc. Natl. Acad. Sci., 108(12), pp. 4743–4747. [CrossRef]
Bayindir, M. , Sorin, F. , Abouraddy, A. F. , Viens, J. , Hart, S. D. , Joannopoulos, J. D. , and Fink, Y. , 2004, “ Metal-Insulator-Semiconductor Optoelectronic Fibres,” Nature, 431(7010), pp. 826–829. [CrossRef] [PubMed]
Bayindir, M. , Shapira, O. , Saygin-Hinczewski, D. , Viens, J. , Abouraddy, A. F. , Joannopoulos, J. D. , and Fink, Y. , 2005, “ Integrated Fibres for Self-Monitored Optical Transport,” Nat. Mater., 4(11), pp. 820–825. [CrossRef]
Bayindir, M. , Abouraddy, A. F. , Arnold, J. , Joannopoulos, J. D. , and Fink, Y. , 2006, “ Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater., 18(7), pp. 845–849. [CrossRef]
Egusa, S. , Wang, Z. , Chocat, N. , Ruff, Z. M. , Stolyarov, A. M. , Shemuly, D. , Sorin, F. , Rakich, P. T. , Joannopoulos, J. D. , and Fink, Y. , 2010, “ Multimaterial Piezoelectric Fibres,” Nat. Mater., 9(8), pp. 643–648. [CrossRef] [PubMed]
Chocat, N. , Lestoquoy, G. , Wang, Z. , Rodgers, D. M. , Joannopoulos, J. D. , and Fink, Y. , 2012, “ Piezoelectric Fibers for Conformal Acoustics,” Adv. Mater., 24(39), pp. 5327–5332. [CrossRef] [PubMed]
Gumennik, A. , Stolyarov, A. M. , Schell, B. R. , Hou, C. , Lestoquoy, G. , Sorin, F. , McDaniel, W. , Rose, A. , Joannopoulos, J. D. , and Fink, Y. , 2012, “ All-in-Fiber Chemical Sensing,” Adv. Mater., 24(45), pp. 6005–6009. [CrossRef] [PubMed]
Lestoquoy, G. , Chocat, N. , Wang, Z. , Joannopoulos, J. D. , and Fink, Y. , 2013, “ Fabrication and Characterization of Thermally Drawn Fiber Capacitors,” Appl. Phys. Lett., 102(15), p. 152908. [CrossRef]
Yaman, M. , Khudiyev, T. , Ozgur, E. , Kanik, M. , Aktas, O. , Ozgur, E. O. , Deniz, H. , Korkut, E. , and Bayindir, M. , 2011, “ Arrays of Indefinitely Long Uniform Nanowires and Nanotubes,” Nat. Mater., 10(7), pp. 494–501. [CrossRef] [PubMed]
Tuniz, A. , Lwin, R. , Argyros, A. , Fleming, S. C. , and Kuhlmey, B. T. , 2012, “ Fabricating Metamaterials Using the Fiber Drawing Method,” J. Visualized Exp., (68), p. e4299.
Alchalaby, A. , Lwin, R. , Al-Janabi, A. H. , Trimby, P. W. , Fleming, S. C. , Kuhlmey, B. T. , and Argyros, A. , 2016, “ Investigation of Plateau–Rayleigh Instability in Drawn Metal–Polymer Composite Fibers for Metamaterials Fabrication,” J. Lightwave Technol., 34(9), pp. 2198–2205. [CrossRef]
Zhao, J. , Javadi, A. , Lin, T.-C. , Hwang, I. , Yang, Y. , Guan, Z. , and Li, X. , 2016, “ Scalable Manufacturing of Metal Nanoparticles by Thermal Fiber Drawing,” ASME J. Micro Nano-Manuf., 4(4), p. 041002. [CrossRef]
Suman, B. , and Tandon, P. , 2010, “ Fluid Flow Stability Analysis of Multilayer Fiber Drawing,” Chem. Eng. Sci., 65(20), pp. 5537–5549. [CrossRef]
Jasion, G. , Shrimpton, J. , Chen, Y. , Bradley, T. , Richardson, D. , and Poletti, F. , 2015, “ MicroStructure Element Method (MSEM): Viscous Flow Model for the Virtual Draw of Microstructured Optical Fibers,” Opt. Express, 23(1), pp. 312–329. [CrossRef] [PubMed]
Pone, E. , Dubois, C. , Gu, N. , Gao, Y. , Dupuis, A. , Boismenu, F. , Lacroix, S. , and Skorobogatiy, M. , 2006, “ Drawing of the Hollow All-Polymer Bragg Fibers,” Opt. Express, 14(13), pp. 5838–5852. [CrossRef] [PubMed]
Stokes, Y. M. , Buchak, P. , Crowdy, D. G. , and Ebendorff-Heidepriem, H. , 2014, “ Drawing of Micro-Structured Fibres: Circular and Non-Circular Tubes,” J. Fluid Mech., 755, pp. 176–203. [CrossRef]
Tomotika, S. , 1936, “ Breaking Up of a Drop of Viscous Liquid Immersed in Another Viscous Fluid Which Is Extending at a Uniform Rate,” Proc. R. Soc. London. Ser. A, Math. Phys. Sci., 153(879), pp. 302–318. [CrossRef]
Xue, S. , Barton, G. W. , Fleming, S. , and Argyros, A. , 2017, “ Analysis of Capillary Instability in Metamaterials Fabrication Using Fibre Drawing Technology,” J. Lightwave Technol., 35(11), pp. 2167–2174. [CrossRef]
Xue, S. , Barton, G. , Fleming, S. , and Argyros, A. , “ Heat Transfer Modelling of the Capillary Fibre Drawing Process,” ASME J. Heat Transfer, 139(7), p. 072001. [CrossRef]
Zhang, W. W. , 2004, “ Viscous Entrainment From a Nozzle: Singular Liquid Spouts,” Phys. Rev. Lett., 93(18), p. 184502. [CrossRef] [PubMed]
Ganan-Calvo, A. M. , Gonzalez-Prieto, R. , Riesco-Chueca, P. , Herrada, M. A. , and Flores-Mosquera, M. , 2007, “ Focusing Capillary Jets Close to the Continuum Limit,” Nat. Phys., 3(10), pp. 737–742. [CrossRef]
Christopher, G. F. , and Anna, S. L. , 2007, “ Microfluidic Methods for Generating Continuous Droplet Streams,” J. Phys. D: Appl. Phys., 40(19), p. R319. [CrossRef]
Yarin, A. , Gospodinov, P. , Gottlieb, O. , and Graham, M. , 1999, “ Newtonian Glass Fiber Drawing: Chaotic Variation of the Cross-Sectional Radius,” Phys. Fluids, 11(11), pp. 3201–3208. [CrossRef]
BASF Corporation, 2017, “ Datasheet From Manufacturer (BASF),” BASF Corporation, Wyandotte, MI, accessed Nov. 20, 2017, http://iwww.plasticsportal.com/products/dspdf.php?type=iso&param=Ultrason+E+3010
Wang, L. , Wang, Q. , Xian, A. , and Lu, K. , 2003, “ Precise Measurement of the Densities of Liquid Bi, Sn, Pb and Sb,” J. Phys.: Condens. Matter, 15(6), p. 777. [CrossRef]
Eustathopoulos, N. , Nicholas, G. , and Drevet, B. , 1999, Wettability at High Temperatures, Elsevier Science, Oxford , UK.
Gancarz, T. , Moser, Z. , Gąsior, W. , Pstruś, J. , and Henein, H. , 2011, “ A Comparison of Surface Tension, Viscosity, and Density of Sn and Sn–Ag Alloys Using Different Measurement Techniques,” Int. J. Thermophys., 32(6), pp. 1210–1233. [CrossRef]
Acrivos, A. , and Lo, T. , 1978, “ Deformation and Breakup of a Single Slender Drop in an Extensional Flow,” J. Fluid Mech., 86(4), pp. 641–672. [CrossRef]
Taylor, G. , 1934, “ The Formation of Emulsions in Definable Fields of Flow,” Proc. R. Soc. London. Ser. A, 146(858), pp. 501–523. [CrossRef]
Sherwood, J. , 1984, “ Tip Streaming From Slender Drops in a Nonlinear Extensional Flow,” J. Fluid Mech., 144, pp. 281–295. [CrossRef]
Taroni, M. , Breward, C. , Cummings, L. , and Griffiths, I. , 2013, “ Asymptotic Solutions of Glass Temperature Profiles During Steady Optical Fibre Drawing,” J. Eng. Math., 80(1), pp. 1–20. [CrossRef]
Castro-Hernández, E. , Campo-Cortés, F. , and Gordillo, J. M. , 2012, “ Slender-Body Theory for the Generation of Micrometre-Sized Emulsions Through Tip Streaming,” J. Fluid Mech., 698, pp. 423–445. [CrossRef]
Gordillo, J. M. , Sevilla, A. , and Campo-Cortés, F. , 2014, “ Global Stability of Stretched Jets: Conditions for the Generation of Monodisperse Micro-Emulsions Using Coflows,” J. Fluid Mech., 738, pp. 335–357. [CrossRef]
Taylor, G. , 1966, “ Conical Free Surfaces and Fluid Interfaces,” Applied Mechanics, Springer, Berlin, pp. 790–796. [CrossRef]
Middleman, S. , 1977, Fundamentals of Polymer Processing, McGraw-Hill, New York.
Birdi, K. , Vu, D. , and Winter, A. , 1988, “ Interfacial Tension of Liquids From the Height and Contact Angle of a Single Sessile Drop,” Colloid Polym. Sci., 266(9), pp. 849–854. [CrossRef]
Schneider, C. A. , Rasband, W. S. , and Eliceiri, K. W. , 2012, “ NIH Image to ImageJ: 25 Years of Image Analysis,” Nat. Methods, 9(7), p. 671. [CrossRef] [PubMed]
Stalder, A. , Kulik, G. , Sage, D. , Barbieri, L. , and Hoffmann, P. , 2006, “ A Snake-Based Approach to Accurate Determination of Both Contact Points and Contact Angles,” Colloids Surf. A, 286(1), pp. 92–103. [CrossRef]
Reeve, H. , and Mescher, A. , 2003, “ Effect of Unsteady Natural Convection on the Diameter of Drawn Polymer Optical Fiber,” Opt. Express, 11(15), pp. 1770–1779. [CrossRef] [PubMed]
Zaporojan, S. , Plotnic, C. , Calmicov, I. , and Larin, V. , 2010, Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches, IGI Global, Hershey, PA.


Grahic Jump Location
Fig. 2

Image of the neck-down region (a) and the schematic (b) corresponding to an axisymmetric free surface extensional flow in the cladding entraining an immiscible molten metal from a nozzle (or melt front) located at z=0. The entrained molten metal core has radius R(z,t). Downstream at z=L, the metal solidifies with diameter R(L,t).

Grahic Jump Location
Fig. 3

Cross-sectional images of the metal core fibers obtained from process parameters given in Table 2

Grahic Jump Location
Fig. 4

Experimental result supporting the proposed diameter control mechanism

Grahic Jump Location
Fig. 1

Schematic and process parameters of metal core fiber drawing from a preform

Grahic Jump Location
Fig. 5

Measured and analytical cladding profile

Grahic Jump Location
Fig. 10

Capillary number versus aspect ratio

Grahic Jump Location
Fig. 6

Measured and calculated core profile

Grahic Jump Location
Fig. 11

Continuous mode (a) and dripping mode (b)

Grahic Jump Location
Fig. 12

An axisymmetric free surface extensional flow (−(r/2)(dU(z)/dz),0,U(z)) in the cladding entrains an immiscible molten metal from a nozzle (or melt front) located at z=0. The entrained molten metal core has radius R(z,t). Downstream at z=L, the metal solidifies with diameter R(L,t).

Grahic Jump Location
Fig. 7

Schematic of the procedure to obtain a Sn sessile drop surrounded by PES

Grahic Jump Location
Fig. 8

Drop height versus drop volume

Grahic Jump Location
Fig. 9

A solidified Sn droplet after removing the PES for contact angle measurements



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In