Technical Brief

Graphene Growth on and Transfer From Platinum Thin Films

[+] Author and Article Information
Joon Hyong Cho

Mechanical Engineering Department,
The University of Texas at Austin,
Austin, TX 78712
e-mail: joonyboy@utexas.edu

Michael Cullinan

Mechanical Engineering Department,
The University of Texas at Austin,
Austin, TX 78712
e-mail: michael.cullinan@austin.utexas.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received September 27, 2017; final manuscript received November 21, 2017; published online December 26, 2017. Editor: Jian Cao.

J. Micro Nano-Manuf 6(2), 024501 (Dec 26, 2017) (5 pages) Paper No: JMNM-17-1059; doi: 10.1115/1.4038676 History: Received September 27, 2017; Revised November 21, 2017

This paper presents graphene growth on Pt thin films deposited with four different adhesion layers: Ti, Cr, Ta, and Ni. During the graphene growth at 1000 °C using conventional chemical vapor deposition (CVD) method, these adhesion layers diffuse into and alloy with Pt layer resulting in graphene to grown on different alloys. This means that each different adhesion layers induce a different quality and number of layer(s) of graphene grown on the Pt thin film. This paper presents the feasibility of graphene growth on Pt thin films with various adhesion layers and the obstacles needed to overcome in order to enhance graphene transfer from Pt thin films. Therefore, this paper addresses one of the major difficulties of graphene growth and transfer to the implementation of graphene in nano/micro-electromechanical systems (NEMS/MEMS) devices.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Bunch, J. S. , Van Der Zande, A. M. , Verbridge, S. S. , Frank, I. W. , Tanenbaum, D. M. , Parpia, J. M. , Craighead, H. G. , and Mceuen, P. L. , 2007, “Electromechanical Resonators From Graphene Sheets,” Science, 315(5811), pp. 490–493. [CrossRef] [PubMed]
Novoselov, K. S. , Geim, A. K. , Morozov, S. V. , Jiang, D. , Zhang, Y. , Dubonos, S. V. , Grigorieva, I. V. , and Firsov, A. A. , 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306(5696), pp. 666–669. [CrossRef] [PubMed]
Kedzierski, J. , Hsu, P.-L. , Healey, P. , Wyatt, P. W. , Keast, C. L. , Sprinkle, M. , Berger, C. , and de Heer, W. A. , 2008, “Epitaxial Graphene Transistors on SiC Substrates,” IEEE Trans. Electron. Devices, 55(8), pp. 2078–2085. [CrossRef]
Kim, K. S. , Zhao, Y. , Jang, H. , Lee, S. Y. , Kim, J. M. , Ahn, J.-H. , Kim, P. , Choi, J.-Y. , and Hong, B. H. , 2009, “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,” Nature, 457(7230), pp. 706–710. [CrossRef] [PubMed]
Seah, C.-M. , Chai, S.-P. , and Mohamed, A. R. , 2014, “Mechanisms of Graphene Growth by Chemical Vapour Deposition on Transition Metals,” Carbon, 70, pp. 1–21. [CrossRef]
Luo, Z. , Lu, Y. , Singer, D. W. , Berck, M. E. , Somers, L. A. , Goldsmith, B. R. , and Johnson, A. T. C. , 2011, “Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure,” Chem. Mater., 23(6), pp. 1441–1447. [CrossRef]
Kang, B. J. , Mun, J. H. , Hwang, C. Y. , and Cho, B. J. , 2009, “Monolayer Graphene Growth on Sputtered Thin Film Platinum,” J. Appl. Phys., 106(10), p. 104309. [CrossRef]
Lee, K. , and Ye, J. , 2016, “Significantly Improved Thickness Uniformity of Graphene Monolayers Grown by Chemical Vapor Deposition by Texture and Morphology Control of the Copper Foil Substrate,” Carbon, 100, pp. 441–449. [CrossRef]
Tao, L. , Lee, J. , Chou, H. , Holt, M. , Ruoff, R. S. , and Akinwande, D. , 2012, “Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films,” ACS Nano, 6(3), pp. 2319–2325. [CrossRef] [PubMed]
Gao, J.-H. , Sagisaka, K. , Kitahara, M. , Xu, M.-S. , Miyamoto, S. , and Fujita, D. , 2012, “Graphene Growth on a Pt(111) Substrate by Surface Segregation and Precipitation,” Nanotechnology, 23(5), p. 55704. [CrossRef]
Thompson, C. V. , 2012, “Solid-State Dewetting of Thin Films,” Annu. Rev. Mater. Res., 42(1), pp. 399–434. [CrossRef]
Ismach, A. , Druzgalski, C. , Penwell, S. , Schwartzberg, A. , Zheng, M. , Javey, A. , Bokor, J. , and Zhang, Y. , 2010, “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces,” Nano Lett., 10(5), pp. 1542–1548. [CrossRef] [PubMed]
Hao, Y. , Wang, L. , Liu, Y. , Chen, H. , Wang, X. , Tan, C. , Nie, S. , Suk, J. W. , Jiang, T. , Liang, T. , Xiao, J. , Ye, W. , Dean, C. R. , Yakobson, B. I. , Mccarty, K. F. , Kim, P. , Hone, J. , Colombo, L. , and Ruoff, R. S. , 2016, “Oxygen-Activated Growth and Bandgap Tunability of Large Single-Crystal Bilayer Graphene,” Nat. Nanotechnol., 11(5), pp. 426–431. [CrossRef] [PubMed]
Cho, J. H. , Sun, G. , and Cullinan, M. , 2016, “A Method to Manufacture Repeatable Graphene-Based NEMS Devices at the Wafer-Scale,” ASME Paper No. MSEC2016-8567.
Levendorf, M. , Ruiz-Vargas, C. , Garg, S. , and Park, J. , 2009, “Transfer-Free Batch Fabrication of Single Layer Graphene Transistors,” Nano Lett., 9(12), pp. 4479–4483. [CrossRef] [PubMed]
Cullinan, M. A. , and Gorman, J. J. , 2013, “Transfer-Free, Wafer-Scale Fabrication of Graphene-Based Nanoelectromechanical Resonators,” Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, May 14, pp. 3–6.
Nam, J. , Kim, D.-C. , Yun, H. , Shin, D. H. , Nam, S. , Lee, W. K. , Hwang, J. Y. , Lee, S. W. , Weman, H. , and Kim, K. S. , 2016, “Chemical Vapor Deposition of Graphene on Platinum: Growth and Substrate Interaction,” Carbon, 111, pp. 733–740. [CrossRef]
Gao, T. , Xie, S. , Gao, Y. , Liu, M. , Chen, Y. , Zhang, Y. , and Liu, Z. , 2011, “Growth and Atomic-Scale Characterizations of Graphene on Multifaceted Textured Pt Foils Prepared by Chemical Vapor Deposition,” ACS Nano, 5(11), pp. 9194–9201. [CrossRef] [PubMed]
Shivaraman, S. , Barton, R. A. , Yu, X. , Alden, J. , Herman, L. , Chandrashekhar, M. S. V. , Park, J. , McEuen, P. L. , Parpia, J. M. , Craighead, H. G. , and Spencer, M. G. , 2009, “Free-Standing Epitaxial Graphene,” Nano Lett., 9(9), pp. 3100–3105. [CrossRef] [PubMed]
Kang, J. H. , Moon, J. , Kim, D. J. , Kim, Y. , Jo, I. , Jeon, C. , Lee, J. , and Hong, B. H. , 2016, “Strain Relaxation of Graphene Layers by Cu Surface Roughening,” Nano Lett., 16(10), pp. 5993–5998. [CrossRef]
Okamoto, H. , 2010, “Ni-Pt (Nickel-Platinum),” J. Phase Equilibria Diffus., 31(3), p. 322. [CrossRef]
Soldano, C. , Mahmood, A. , and Dujardin, E. , 2010, “Production, Properties and Potential of Graphene,” Carbons, 48(8), pp. 2127–2150. [CrossRef]
Gao, L. , Ren, W. , Xu, H. , Jin, L. , Wang, Z. , Ma, T. , Ma, L.-P. , Zhang, Z. , Fu, Q. , Peng, L.-M. , Bao, X. , and Cheng, H.-M. , 2012, “Repeated Growth and Bubbling Transfer of Graphene With Millimetre-Size Single-Crystal Grains Using Platinum,” Nat. Commun., 3, p. 699. [CrossRef] [PubMed]
Graf, D. , Molitor, F. , Ensslin, K. , Stampfer, C. , Jungen, A. , Hierold, C. , and Wirtz, L. , 2007, “Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene,” Nano Lett., 7(2), pp. 238–242. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Scanning electron microscopy (SEM) images of graphene transferred from Pt thin film with different adhesion layers: (a) Ti, (b) Cr, (c) Ta, and (d) Ni

Grahic Jump Location
Fig. 2

Comparison of Pt grains with adhesion layers of the lowest boiling temperature (Cr) and of the highest boiling temperature (Ta). Arrow indicates the region where the potential dewet hole is present: (a) Pt/Cr grains after graphene growth and (b) Pt/Ta grains after graphene growth.

Grahic Jump Location
Fig. 3

Two-dimensional Raman maps of I2D peak over IG peak of graphene transferred from Pt thin film on adhesion layer of (a) Ti, (b) Cr, (c) Ta, and (d) Ni

Grahic Jump Location
Fig. 4

SEM images of Pt surface after bubble transfer (a) in boundary and (b) center regions. (c) Two-dimensional Raman map of graphene transferred from Pt–Cr onto SiO2/Si wafer using bubble transfer method. Both 2D Raman map (I2D/IG) and (d) a SEM image shows severely damaged condition of graphene due to hydrogen bubble impact during the transfer.

Grahic Jump Location
Fig. 5

TOF-SIMS analysis of two different adhesion layers: (a) Pt/Ta before graphene growth, (b) after graphene growth at 1000 °C, (c) Pt/Ni before graphene growth, and (d) after graphene growth at 1000 °C



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In