Research Papers

Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials

[+] Author and Article Information
Molla Hasan, Imrhankhan Shajahan

Department of Mechanical and
Aerospace Engineering,
Rutgers University,
Piscataway, NJ 08854

Manesh Gopinadhan

Department of Chemical and Environmental
Yale University,
New Haven, CT 06520

Jittisa Ketkaew, Jan Schroers

Department of Mechanical Engineering and
Materials Science,
Yale University,
New Haven, CT 06520

Aaron Anesgart, Chloe Cho, Saransh Chopra, Michael Higgins, Saira Reyes

New Jersey Governor's School of Engineering
and Technology,
Rutgers University,
Piscataway, NJ 08854

Chinedum O. Osuji

Department of Chemical and Environmental
Yale University,
New Haven, CT 06520;
Department of Chemical and Environmental
University of Pennsylvania,
Philadelphia, PA 19104

Jonathan P. Singer

Department of Mechanical and
Aerospace Engineering,
Rutgers University,
98 Brett Road,
Piscataway, NJ 08854
e-mail: jonathan.singer@rutgers.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received August 6, 2018; final manuscript received September 16, 2018; published online October 16, 2018. Editor: Nicholas Fang.

J. Micro Nano-Manuf 6(4), 041003 (Oct 16, 2018) (8 pages) Paper No: JMNM-18-1027; doi: 10.1115/1.4041532 History: Received August 06, 2018; Revised September 16, 2018

We report the tuning of surface wetting through sacrificial nanoimprint lithography (SNIL). In this process, grown ZnO nanomaterials are transferred by imprint into a metallic glass (MG) and an elastomeric material, and then etched to impart controlled surface roughness. This process increases the hydrophilicity and hydrophobicity of both surfaces, the Pt57.5Cu14.7Ni5.3P22.5 MG and thermoplastic elastomer (TPE), respectively. The growth conditions of the ZnO change the characteristic length scale of the roughness, which in turn alters the properties of the patterned surface. The novelty of this approach includes reusability of templates and that it is able to create superhydrophilic and superhydrophobic surfaces in a manner compatible with the fabrication of macroscopic three-dimensional (3D) parts. Because the wettability is achieved by only modifying topography, without using any chemical surface modifiers, the prepared surfaces are relatively more durable.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Kota, A. K. , Kwon, G. , Choi, W. , Mabry, J. M. , and Tuteja, A. , 2012, “ Hygro-Responsive Membranes for Effective Oil-Water Separation,” Nat. Commun., 3, p. 1025. [CrossRef] [PubMed]
Hermelin, E. , Petitjean, J. , Lacroix, J. C. , Chane-Ching, K. I. , Tanguy, J. , and Lacaze, P. C. , 2008, “ Ultrafast Electrosynthesis of High Hydrophobic Polypyrrole Coatings on a Zinc Electrode: Applications to the Protection Against Corrosion,” Chem. Mater., 20(13), pp. 4447–4456. [CrossRef]
Tahk, D. , Kim, T. I. , Yoon, H. , Choi, M. , Shin, K. , and Suh, K. Y. , 2010, “ Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photo Polymerization and Dry Etching,” Langmuir, 26(4), pp. 2240–2243. [CrossRef] [PubMed]
Bhushan, B. , and Jung, Y. C. , 2011, “ Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci., 56(1), pp. 1–108. [CrossRef]
Drelich, J. , Chibowski, E. , Meng, D. D. , and Terpilowski, K. , 2011, “ Hydrophilic and Superhydrophilic Surfaces and Materials,” Soft Matter, 7(21), pp. 9804–9828. [CrossRef]
Zhang, X. , Shi, F. , Niu, J. , Jiang, Y. G. , and Wang, Z. Q. , 2008, “ Superhydrophobic Surfaces: From Structural Control to Functional Application,” J. Mater. Chem., 18(6), pp. 621–633. [CrossRef]
Roach, P. , Shirtcliffe, N. J. , and Newton, M. I. , 2008, “ Progress in Superhydrophobic Surface Development,” Soft Matter, 4(2), pp. 224–240. [CrossRef]
Chen, C. B. , Li, R. , Xu, L. M. , and Yan, D. Y. , 2014, “ Three-Dimensional Superhydrophobic Porous Hybrid Monoliths for Effective Removal of Oil Droplets From the Surface of Water,” RSC Adv., 4(33), pp. 17393–17400. [CrossRef]
Ruan, C. P. , Shen, M. X. , Ren, X. Y. , Ai, K. L. , and Lu, L. H. , 2016, “ A Versatile and Scalable Approach Toward Robust Superhydrophobic Porous Materials With Excellent Absorbency and Flame Retardancy,” Sci. Rep., 6, p. 31233. [CrossRef] [PubMed]
Bird, J. C. , Dhiman, R. , Kwon, H. M. , and Varanasi, K. K. , 2013, “ Reducing the Contact Time of a Bouncing Drop,” Nature, 503(7476), pp. 385–388. [CrossRef] [PubMed]
Schutzius, T. M. , Jung, S. , Maitra, T. , Graeber, G. , Kohme, M. , and Poulikakos, D. , 2015, “ Spontaneous Droplet Trampolining on Rigid Superhydrophobic Surfaces,” Nature, 527(7576), pp. 82–85. [CrossRef] [PubMed]
Boreyko, J. B. , and Chen, C. H. , 2009, “ Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces,” Phy. Rev. Lett., 103(18), p. 184501. [CrossRef]
Park, K. C. , Kim, P. , Grinthal, A. , He, N. , Fox, D. , Weaver, J. C. , and Aizenberg, J. , 2016, “ Condensation on Slippery Asymmetric Bumps,” Nature, 531(7592), pp. 78–82. [CrossRef] [PubMed]
Zhao, J. , Zhang, X. B. , Chen, N. , and Pan, Q. M. , 2012, “ Why Superhydrophobicity Is Crucial for a Water-Jumping Microrobot? Experimental and Theoretical Investigations,” ACS Appl. Mater. Interfaces, 4(7), pp. 3706–3711. [CrossRef] [PubMed]
Song, Y. S. , and Sitti, M. , 2007, “ Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments,” IEE Trans. Rob., 23(3), pp. 578–589. [CrossRef]
Zhu, X. T. , Zhang, Z. Z. , Ren, G. N. , Yang, J. , Wang, K. , Xu, X. H. , Men, X. H. , and Zhou, X. Y. , 2012, “ A Novel Superhydrophobic Bulk Material,” J. Mater. Chem., 22(38), pp. 20146–20148. [CrossRef]
Ji, K. J. , Liu, J. , Zhang, J. , Chen, J. , and Dai, Z. D. , 2014, “ Super-Floatable Multidimensional Porous Metal Foam Integrated With a Bionic Superhydrophobic Surface,” J. Mater. Chem. A, 2(39), pp. 16589–16593. [CrossRef]
Bhushan, B. , Jung, Y. C. , and Koch, K. , 2009, “ Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A, 367(1894), pp. 1631–1672. [CrossRef]
Fan, J. G. , Tang, X. J. , and Zhao, Y. P. , 2004, “ Water Contact Angles of Vertically Aligned Si Nanorod Arrays,” Nanotechnol., 15(5), pp. 501–504. [CrossRef]
Bhushan, B. , Jung, Y. C. , and Koch, K. , 2009, “ Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces,” Langmuir, 25(5), pp. 3240–3248. [CrossRef] [PubMed]
Rupp, F. , Scheideler, L. , Rehbein, D. , Axmann, D. , and Geis-Gerstorfer, J. , 2004, “ Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications,” Biomaterials, 25(7–8), pp. 1429–1438. [CrossRef] [PubMed]
Bico, J. , Tordeux, C. , and Quere, D. , 2001, “ Rough Wetting,” Europhys. Lett., 55(2), pp. 214–220. [CrossRef]
Sabbah, A. , Youssef, A. , and Damman, P. , 2016, “ Superhydrophobic Surfaces Created by Elastic Instability of Pdms,” Appl. Sci., 6(5), p. 152. [CrossRef]
Kawai, A. , and Nagata, H. , 1994, “ Wetting Behavior of Liquid on Geometrical Rough-Surface Formed by Photolithography,” Jpn. J. Appl. Phys. Part 2, 33(Pt 2), pp. L1283–L1285. [CrossRef]
Shirtcliffe, N. J. , Aqil, S. , Evans, C. , McHale, G. , Newton, M. I. , Perry, C. C. , and Roach, P. , 2004, “ The Use of High Aspect Ratio Photoresist (Su-8) for Super-Hydrophobic Pattern Prototyping,” J. Micromech. Microeng., 14(10), pp. 1384–1389. [CrossRef]
Xia, Y. , Kim, E. , Zhao, X.-M. , Rogers, J. A. , Prentiss, M. , and Whitesides, G. M. , 1996, “ Complex Optical Surfaces Formed by Replica Molding against Elastomeric Masters,” Science, 273(5273), pp. 347–349. [CrossRef] [PubMed]
Xu, B. , Arias, F. , Brittain, S. T. , Zhao, X. M. , Grzybowski, B. , Torquato, S. , and Whitesides, G. M. , 1999, “ Making Negative Poisson's Ratio Microstructures by Soft Lithography,” Adv. Mater., 11(14), pp. 1186–1189. [CrossRef]
Singer, J. P. , Pelligra, C. I. , Kornblum, N. , Choo, Y. , Gopinadhan, M. , Bordeenithikasem, P. , Ketkaew, J. , Liew, S. F. , Cao, H. , Schroers, J. , and Osuji, C. O. , 2015, “ Multiscale Patterning of a Metallic Glass Using Sacrificial Imprint Lithography,” Microsyst. Nanoeng., 1, p. 15040. [CrossRef]
Singer, J. P. , Gopinadhan, M. , Shao, Z. , Taylor, A. D. , Schroers, J. , and Osuji, C. O. , 2015, “ Nanoimprinting Sub-100 Nnn Features in a Photovoltaic Nanocomposite Using Durable Bulk Metallic Glass Molds,” ACS Appl. Mater. Interfaces, 7(6), pp. 3456–3461. [CrossRef] [PubMed]
Busscher, H. J. , Stokroos, I. , Vandermei, H. C. , Rouxhet, P. G. , and Schakenraad, J. M. , 1992, “ Preparation and Characterization of Superhydrophobic Fep-Teflon Surfaces,” J. Adhes. Sci. Technol., 6(3), pp. 347–356. [CrossRef]
Zhang, X. , Jin, M. , Liu, Z. , Nishimoto, S. , Saito, H. , Murakami, T. , and Fujishima, A. , 2006, “ Preparation and Photocatalytic Wettability Conversion of Tio2-Based Superhydrophobic Surfaces,” Langmuir, 22(23), pp. 9477–9479. [CrossRef] [PubMed]
Li, X. H. , Chen, G. M. , Ma, Y. M. , Feng, L. , Zhao, H. Z. , Jiang, L. , and Wang, F. S. , 2006, “ Preparation of a Super-Hydrophobic Poly(Vinyl Chloride) Surface Via Solvent-Nonsolvent Coating,” Polymer, 47(2), pp. 506–509. [CrossRef]
Han, J. T. , Xu, X. R. , and Cho, K. W. , 2005, “ Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers,” Langmuir, 21(15), pp. 6662–6665. [CrossRef] [PubMed]
Karuppuchamy, S. , and Jeong, J. M. , 2005, “ Super-Hydrophilic Amorphous Titanium Dioxide Thin Film Deposited by Cathodic Electrodeposition,” Mater. Chem. Phys., 93(2–3), pp. 251–254. [CrossRef]
Satyaprasad, A. , Jain, V. , and Nema, S. K. , 2007, “ Deposition of Superhydrophobic Nanostructured Teflon-Like Coating Using Expanding Plasma Arc,” Appl. Surf. Sci., 253(12), pp. 5462–5466. [CrossRef]
Genzer, J. , and Efimenko, K. , 2000, “ Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers,” Science, 290(5499), pp. 2130–2133. [CrossRef] [PubMed]
Song, X. Y. , Zhai, J. , Wang, Y. L. , and Jiang, L. , 2005, “ Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties,” J. Phy. Chem. B, 109(9), pp. 4048–4052. [CrossRef]
Pozzato, A. , Dal Zilio, S. , Fois, G. , Vendramin, D. , Mistura, G. , Belotti, M. , Chen, Y. , and Natali, M. , 2006, “ Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography,” Microelectron. Eng., 83(4–9), pp. 884–888. [CrossRef]
Lee, S. M. , and Kwon, T. H. , 2006, “ Mass-Producible Replication of Highly Hydrophobic Surfaces From Plant Leaves,” Nanotechnology, 17(13), pp. 3189–3196. [CrossRef]
Radha, B. , Lim, S. H. , Saifullah, M. S. M. , and Kulkarni, G. U. , 2013, “ Metal Hierarchical Patterning by Direct Nanoimprint Lithography,” Sci. Rep., 3, p. 1078. [CrossRef] [PubMed]
Boinovich, L. , Emelyanenko, A. M. , and Pashinin, A. S. , 2010, “ Analysis of Long-Term Durability of Superhydrophobic Properties Under Continuous Contact With Water,” ACS Appl. Mater. Interfaces, 2(6), pp. 1754–1758. [CrossRef] [PubMed]
Ellis, D. A. , Mabury, S. A. , Martin, J. W. , and Muir, D. C. G. , 2001, “ Thermolysis of Fluoropolymers as a Potential Source of Halogenated Organic Acids in the Environment,” Nature, 412(6844), pp. 321–324. [CrossRef] [PubMed]
Johansson, N. , Fredriksson, A. , and Eriksson, P. , 2008, “ Neonatal Exposure to Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Causes Neurobehavioural Defects in Adult Mice,” Neurotoxicology, 29(1), pp. 160–169. [CrossRef] [PubMed]
Suja, F. , Pramanik, B. K. , and Zain, S. M. , 2009, “ Contamination, Bioaccumulation and Toxic Effects of Perfluorinated Chemicals (PFCS) in the Water Environment: A Review Paper,” Water Sci. Technol., 60(6), pp. 1533–1544. [CrossRef] [PubMed]
Song, W. , Zhang, J. , Xie, Y. , Cong, Q. , and Zhao, B. , 2009, “ Large-Area Unmodified Superhydrophobic Copper Substrate Can Be Prepared by an Electroless Replacement Deposition,” J. Colloid Interf. Sci., 329(1), pp. 208–211. [CrossRef]
Shirtcliffe, N. J. , McHale, G. , Newton, M. I. , Chabrol, G. , and Perry, C. C. , 2004, “ Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater., 16(21), pp. 1929–1932. [CrossRef]
Baruah, S. , and Dutta, J. , 2009, “ Hydrothermal Growth of Zno Nanostructures,” Sci. Technol. Adv. Mat., 10(1), p. 013001. [CrossRef]
Vayssieres, L. , Keis, K. , Lindquist, S. E. , and Hagfeldt, A. , 2001, “ Purpose-Built Anisotropic Metal Oxide Material: 3d Highly Oriented Microrod Array of Zno,” J. Phys. Chem. B, 105(17), pp. 3350–3352. [CrossRef]
Verges, M. A. , Mifsud, A. , and Serna, C. J. , 1990, “ Formation of Rod-Like Zinc-Oxide Microcrystals in Homogeneous Solutions,” J. Chem. Soc. Faraday Trans., 86(6), pp. 959–963. [CrossRef]
Abdelfatah, M. , and El-Shaer, A. , 2018, “ One Step to Fabricate Vertical Submicron Zno Rod Arrays by Hydrothermal Method Without Seed Layer for Optoelectronic Devices,” Mater. Lett., 210, pp. 366–369. [CrossRef]
Kim, S. , Kim, M. S. , Park, H. , Nam, G. , Yoon, H. , and Leem, J. Y. , 2014, “ Seed-Layer-Free Hydrothermal Growth of Zinc Oxide Nanorods on Porous Silicon,” Electron. Mater. Lett., 10(3), pp. 565–571. [CrossRef]
Fan, X. , Fang, G. J. , Guo, S. S. , Liu, N. S. , Gao, H. M. , Qin, P. L. , Li, S. Z. , Long, H. , Zheng, Q. , and Zhao, X. , 2011, “ Controllable Synthesis of Flake-Like Al-Doped Zno Nanostructures and Its Application in Inverted Organic Solar Cells,” Nanoscale Res. Lett., 6 (1), p. 546. [CrossRef] [PubMed]
Xia, T. , Li, N. , Wu, Y. , and Liu, L. , 2012, “ Patterned Superhydrophobic Surface Based on Pd-Based Metallic Glass,” Appl. Phys. Lett., 101(8), p. 081601. [CrossRef]
Li, N. , Xia, T. , Heng, L. , and Liu, L. , 2013, “ Superhydrophobic Zr-Based Metallic Glass Surface With High Adhesive Force,” Appl. Phys. Lett., 102(25), p. 251603. [CrossRef]
Arora, H. S. , Xu, Q. , Xia, Z. , Ho, Y. H. , Dahotre, N. B. , Schroers, J. , and Mukherjee, S. , 2013, “ Wettability of Nanotextured Metallic Glass Surfaces,” Scr. Mater., 69(10), pp. 732–735. [CrossRef]
Zhao, K. , Liu, K. S. , Li, J. F. , Wang, W. H. , and Jiang, L. , 2009, “ Superamphiphobic Cali-Based Bulk Metallic Glasses,” Scr. Mater., 60(4), pp. 225–227. [CrossRef]
Liu, K. , Li, Z. , Wang, W. , and Jiang, L. , 2011, “ Facile Creation of Bio-Inspired Superhydrophobic Ce-Based Metallic Glass Surfaces,” Appl. Phys. Lett., 99(26), p. 261905. [CrossRef]
Gao, M. , Wang, D. P. , Huang, Y. F. , Meng, S. , and Wang, W. H. , 2016, “ Tunable Hydrophobicity on Fractal and Micro-Nanoscale Hierarchical Fracture Surface of Metallic Glasses,” Mater. Des., 95, pp. 612–617. [CrossRef]
Huang, L. , Pu, C. , Fisher, R. K. , Mountain, D. J. H. , Gao, Y. F. , Liaw, P. K. , Zhang, W. , and He, W. , 2015, “ A Zr-Based Bulk Metallic Glass for Future Stent Applications: Materials Properties, Finite Element Modeling, and In Vivo Human Vascular Cell Response,” Acta Biomaterialia, 25, pp. 356–368. [CrossRef] [PubMed]
Schroers, J. , and Johnson, W. L. , 2004, “ Ductile Bulk Metallic Glass,” Phys. Rev. Lett., 93(25), p. 255506. [CrossRef] [PubMed]
Roozbehi, M. , Sangpour, P. , Khademi, A. , and Moshfegh, A. Z. , 2011, “ The Effect of Substrate Surface Roughness on Zno Nanostructures Growth,” Appl. Surf. Sci., 257(8), pp. 3291–3297. [CrossRef]
Schroers, J. , 2005, “ The Superplastic Forming of Bulk Metallic Glasses,” JOM, 57(5), pp. 35–39. [CrossRef]
Li, N. , Chen, W. , and Liu, L. , 2016, “ Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review,” JOM, 68(4), pp. 1246–1261. [CrossRef]
Schroers, J. , 2010, “ Processing of Bulk Metallic Glass,” Adv. Mater., 22(14), pp. 1566–1597. [CrossRef] [PubMed]
Hasan, M. , Warzywoda, J. , and Kumar, G. , 2018, “ Decoupling the Effects of Surface Texture and Chemistry on the Wetting of Metallic Glasses,” Appl. Surf. Sci., 447, pp. 355–362. [CrossRef]
Hasan, M. , 2017, Decoupling the Effects of Surface Roughness and Chemistry on the Wetting of Metallic Glasses, Texas Tech University, Lubbock, TX.
Pawar, R. C. , Kim, H. , and Lee, C. S. , 2014, “ Defect-Controlled Growth of Zno Nanostructures Using Its Different Zinc Precursors and Their Application for Effective Photodegradation,” Curr. Appl. Phys., 14(4), pp. 621–629. [CrossRef]
Wenzel, R. N. , 1949, “ Surface Roughness and Contact Angle,” J. Phys. Chem., 53(9), pp. 1466–1467. [CrossRef]
Bhushan, B. , and Nosonovsky, M. , 2010, “ The Rose Petal Effect and the Modes of Superhydrophobicity,” Philos. Trans. R. Soc. a-Math. Phys. Eng. Sci., 368(1929), pp. 4713–4728. [CrossRef]
Wang, Y. Q. , Shi, Y. , Pan, L. J. , Yang, M. , Peng, L. L. , Zong, S. , Shi, Y. , and Yu, G. H. , 2014, “ Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix,” Nano Lett., 14(8), pp. 4803–4809. [CrossRef] [PubMed]
Lee, S. , Kim, W. , and Yong, K. , 2011, “ Overcoming the Water Vulnerability of Electronic Devices: A Highly Water-Resistant Zno Nanodevice With Multifunctionality,” Adv. Mater., 23(38), pp. 4398–4402. [CrossRef] [PubMed]
Hao, X. Q. , Wang, L. , Lv, D. H. , Wang, Q. D. , Li, L. , He, N. , and Lu, B. H. , 2015, “ Fabrication of Hierarchical Structures for Stable Superhydrophobicity on Metallic Planar and Cylindrical Inner Surfaces,” Appl. Surf. Sci., 325, pp. 151–159. [CrossRef]
Yuen, P. K. , and DeRosa, M. E. , 2011, “ Flexible Microfluidic Devices With Three-Dimensional Interconnected Microporous Walls for Gas and Liquid Applications,” Lab Chip, 11(19), pp. 3249–3255. [CrossRef] [PubMed]
Seo, J. , Lee, S. K. , Lee, J. , Lee, J. S. , Kwon, H. , Cho, S. W. , Ahn, J. H. , and Lee, T. , 2015, “ Path-Programmable Water Droplet Manipulations on an Adhesion Controlled Superhydrophobic Surface,” Sci. Rep., 5 p. 12326. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Synthesis of ZnO nanostructures on aluminum template. (a) Schematic illustration of hydrothermal synthesis steps. The vial containing growth solution and aluminum template (attached with glass slide) was held at 90 °C. (b) SEM images of the aluminum template: (i) bare surface (scale bar 50 μm), (ii) after growing the ZnO nanostructures (scale bars 50 μm and 2 μm), (iii) after etching away the nanostructures (scale bar 100 μm, inset scale bar 5 μm), and (iv) after regrowing the ZnO nanostructures (scale bars 10 μm and 2 μm).

Grahic Jump Location
Fig. 2

Modifying the topography of TPE. (a) Schematic illustration of nanoimprinting. To imprint, both the template and the TPE were heated at 120 °C (which is 10 °C above the Tg of TPE) and pressed. ZnO nanostructures embedded in the TPE broke during demolding at room temperature. The broken nanostructures were removed through etching. (b) SEM images of TPE (Kraton) (i) of a bare surface, (ii) after embossing, and (ii) after etching. (c) SEM images of Pt-MG (i) of flat surface, (ii) after embossing, and (iii) after etching.

Grahic Jump Location
Fig. 3

Water CA alteration by sacrificial templating with different characteristic scales for both pore-like (i) and (ii) and pillar-like (iii) and (iv) geometries. Scale bars in (i) and (iii) are 500 nm and scale bars in (ii) and (iv) are 2 μm.

Grahic Jump Location
Fig. 4

Tuning the surface wettability of TPE. (a) SEM image of aluminum templates with ZnO nanostructures. The growth and density of the nanostructures are varied with the immersion time. (b) SEM images of flat and nanoimprinted TPEs and corresponding CA measurements. Scale bar is 2 μm. (c) Effect of pretreatment of aluminum template on the wettability of TPE. The CAs measurement error is ±5 deg.

Grahic Jump Location
Fig. 5

Superhydrophobic 3D TPE. (a) The aluminum mold for 3D imprinting. (b) Photographs of water droplets on the different faces of the superhydrophobic 3D part. ((c)–(g)) Water droplets on different faces of TPE. (h) Table of CAs of different faces. ((i)–(j)) water droplets rest on vertical and flipped TPE surfaces. ((k)–(m)) Optical images of water droplets on a patterned TPE substrate in flat, bent, and twisted conformations. CA measurement error is ±5 deg.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In