Review Article

Opto-Thermophoretic Tweezers and Assembly

[+] Author and Article Information
Jingang Li

Materials Science and Engineering Program
and Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712

Linhan Lin, Yuji Inoue

Materials Science and Engineering Program and
Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712

Yuebing Zheng

Materials Science and Engineering Program and
Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712
e-mail: zheng@austin.utexas.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received August 13, 2018; final manuscript received September 16, 2018; published online October 18, 2018. Editor: Nicholas Fang.

J. Micro Nano-Manuf 6(4), 040801 (Oct 18, 2018) (10 pages) Paper No: JMNM-18-1028; doi: 10.1115/1.4041615 History: Received August 13, 2018; Revised September 16, 2018

Opto-thermophoretic manipulation is an emerging field, which exploits the thermophoretic migration of particles and colloidal species under a light-controlled temperature gradient field. The entropically favorable photon–phonon conversion and widely applicable heat-directed migration make it promising for low-power manipulation of variable particles in different fluidic environments. By exploiting an optothermal substrate, versatile opto-thermophoretic manipulation of colloidal particles and biological objects can be achieved via optical heating. In this paper, we summarize the working principles, concepts, and applications of the recently developed opto-thermophoretic techniques. Opto-thermophoretic trapping, tweezing, assembly, and printing of colloidal particles and biological objects are discussed thoroughly. With their low-power operation, simple optics, and diverse functionalities, opto-thermophoretic manipulation techniques will offer great opportunities in materials science, nanomanufacturing, life sciences, colloidal science, and nanomedicine.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Ashkin, A. , 1970, “ Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett., 24(4), pp. 156–159. [CrossRef]
Ashkin, A. , Dziedzic, J. M. , Bjorkholm, J. E. , and Chu, S. , 1986, “ Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett., 11(5), pp. 288–290. [CrossRef] [PubMed]
Urban, A. S. , Carretero-Palacios, S. , Lutich, A. A. , Lohmuller, T. , Feldmann, J. , and Jackel, F. , 2014, “ Optical Trapping and Manipulation of Plasmonic Nanoparticles: Fundamentals, Applications, and Perspectives,” Nanoscale, 6(9), pp. 4458–4474. [CrossRef] [PubMed]
Ashkin, A. , Dziedzic, J. M. , and Yamane, T. , 1987, “ Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams,” Nature, 330(6150), pp. 769–771. [CrossRef] [PubMed]
Ashkin, A. , and Dziedzic, J. , 1987, “ Optical Trapping and Manipulation of Viruses and Bacteria,” Science, 235(4795), pp. 1517–1520. [CrossRef] [PubMed]
Burns, M. M. , Fournier, J.-M. , and Golovchenko, J. A. , 1989, “ Optical Binding,” Phys. Rev. Lett., 63(12), pp. 1233–1236. [CrossRef] [PubMed]
Mohanty, S. K. , Andrews, J. T. , and Gupta, P. K. , 2004, “ Optical Binding Between Dielectric Particles,” Opt. Express, 12(12), pp. 2746–2753. [CrossRef] [PubMed]
Leung, S. J. , and Romanowski, M. , 2012, “ Molecular Catch and Release: Controlled Delivery Using Optical Trapping With Light-Responsive Liposomes,” Adv. Mater., 24(47), pp. 6380–6383. [CrossRef] [PubMed]
Maragò, O. M. , Jones, P. H. , Gucciardi, P. G. , Volpe, G. , and Ferrari, A. C. , 2013, “ Optical Trapping and Manipulation of Nanostructures,” Nat. Nanotechnol., 8(11), pp. 807–819. [CrossRef] [PubMed]
Applegate, R. W. , Squier, J. , Vestad, T. , Oakey, J. , and Marr, D. W. M. , 2004, “ Optical Trapping, Manipulation, and Sorting of Cells and Colloids in Microfluidic Systems With Diode Laser Bars,” Opt. Express, 12(19), pp. 4390–4398. [CrossRef] [PubMed]
Grigorenko, A. N. , Roberts, N. W. , Dickinson, M. R. , and Zhang, Y. , 2008, “ Nanometric Optical Tweezers Based on Nanostructured Substrates,” Nat. Photonics, 2(6), pp. 365–370. [CrossRef]
Babynina, A. , Fedoruk, M. , Kühler, P. , Meledin, A. , Döblinger, M. , and Lohmüller, T. , 2016, “ Bending Gold Nanorods With Light,” Nano Lett., 16(10), pp. 6485–6490. [CrossRef] [PubMed]
Rasmussen, M. B. , Oddershede, L. B. , and Siegumfeldt, H. , 2008, “ Optical Tweezers Cause Physiological Damage to Escherichia Coli and Listeria Bacteria,” Appl. Environ. Microbiol., 74(8), pp. 2441–2446. [CrossRef] [PubMed]
Odom, T. W. , and Schatz, G. C. , 2011, “ Introduction to Plasmonics,” Chem. Rev., 111(6), pp. 3667–8. [CrossRef] [PubMed]
Ozbay, E. , 2006, “ Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science, 311(5758), pp. 189–193. [CrossRef] [PubMed]
Lindquist, N. C. , Nagpal, P. , McPeak, K. M. , Norris, D. J. , and Oh, S. H. , 2012, “ Engineering Metallic Nanostructures for Plasmonics and Nanophotonics,” Rep. Prog. Phys, 75(3), p. 036501. [CrossRef] [PubMed]
Juan, M. L. , Righini, M. , and Quidant, R. , 2011, “ Plasmon Nano-Optical Tweezers,” Nat. Photonics, 5(6), pp. 349–356. [CrossRef]
Yoo, D. , Gurunatha, K. L. , Choi, H.-K. , Mohr, D. A. , Ertsgaard, C. T. , Gordon, R. , and Oh, S.-H. , 2018, “ Low-Power Optical Trapping of Nanoparticles and Proteins With Resonant Coaxial Nanoaperture Using 10 Nm Gap,” Nano Lett., 18(6), pp. 3637–3642. [CrossRef] [PubMed]
Huft, P. R. , Kolbow, J. D. , Thweatt, J. T. , and Lindquist, N. C. , 2017, “ Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation,” Nano Lett., 17(12), pp. 7920–7925. [CrossRef] [PubMed]
Shoji, T. , and Tsuboi, Y. , 2014, “ Plasmonic Optical Tweezers Toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping,” J. Phys. Chem. Lett., 5(17), pp. 2957–2967. [CrossRef] [PubMed]
Zheng, Y. , Ryan, J. , Hansen, P. , Cheng, Y. T. , Lu, T. J. , and Hesselink, L. , 2014, “ Nano-Optical Conveyor Belt—Part II: Demonstration of Handoff Between Near-Field Optical Traps,” Nano Lett., 14(6), pp. 2971–6. [CrossRef] [PubMed]
Chiou, P. Y. , Ohta, A. T. , and Wu, M. C. , 2005, “ Massively Parallel Manipulation of Single Cells and Microparticles Using Optical Images,” Nature, 436(7049), pp. 370–2. [CrossRef] [PubMed]
Wu, M. C. , 2011, “ Optoelectronic Tweezers,” Nat. Photonics, 5(6), pp. 322–324. [CrossRef]
Park, S. , Pan, C. , Wu, T.-H. , Kloss, C. , Kalim, S. , Callahan, C. E. , Teitell, M. , and Chiou, E. P. Y. , 2008, “ Floating Electrode Optoelectronic Tweezers: Light-Driven Dielectrophoretic Droplet Manipulation in Electrically Insulating Oil Medium,” Appl. Phys. Lett., 92(15), p. 151101. [CrossRef] [PubMed]
Hsu, H-y. , Ohta, A. T. , Chiou, P.-Y. , Jamshidi, A. , Neale, S. L. , and Wu, M. C. , 2010, “ Phototransistor-Based Optoelectronic Tweezers for Dynamic Cell Manipulation in Cell Culture Media,” Lab Chip, 10(2), pp. 165–172. [CrossRef] [PubMed]
Huang, K.-W. , Wu, Y.-C. , Lee, J.-A. , and Chiou, P.-Y. , 2013, “ Microfluidic Integrated Optoelectronic Tweezers for Single-Cell Preparation and Analysis,” Lab Chip, 13(18), pp. 3721–3727. [CrossRef] [PubMed]
Lin, L. , Hill, E. H. , Peng, X. , and Zheng, Y. , 2018, “ Optothermal Manipulations of Colloidal Particles and Living Cells,” Acc. Chem. Res., 51(6), pp. 1465–1474. [CrossRef] [PubMed]
Zhao, C. , Xie, Y. , Mao, Z. , Zhao, Y. , Rufo, J. , Yang, S. , Guo, F. , Mai, J. D. , and Huang, T. J. , 2014, “ Theory and Experiment on Particle Trapping and Manipulation Via Optothermally Generated Bubbles,” Lab Chip, 14(2), pp. 384–391. [CrossRef] [PubMed]
Xie, Y. , and Zhao, C. , 2017, “ An Optothermally Generated Surface Bubble and Its Applications,” Nanoscale, 9(20), pp. 6622–6631. [CrossRef] [PubMed]
Parola, A. , and Piazza, R. , 2004, “ Particle Thermophoresis in Liquids,” Eur. Phys. J. E, 15(3), pp. 255–263. [CrossRef]
Piazza, R. , and Parola, A. , 2008, “ Thermophoresis in Colloidal Suspensions,” J. Phys.: Condens. Matter, 20(15), p. 153102. [CrossRef]
Reichl, M. , Herzog, M. , Götz, A. , and Braun, D. , 2014, “ Why Charged Molecules Move Across a Temperature Gradient: The Role of Electric Fields,” Phys. Rev. Lett., 112(19), p. 198101. [CrossRef] [PubMed]
Duhr, S. , and Braun, D. , 2006, “ Why Molecules Move along a Temperature Gradient,” Proc. Natl. Acad. Sci. U. S. A, 103(52), pp. 19678–19682. [CrossRef] [PubMed]
Piazza, R. , 2008, “ Thermophoresis: Moving Particles With Thermal Gradients,” Soft Matter, 4(9), pp. 1740–1744. [CrossRef]
Morozov, K. I. , 1999, “ Thermal Diffusion in Disperse Systems,” J. Exp. Theor. Phys., 88(5), pp. 944–946. [CrossRef]
Julien, M. , and Alois, W. , 2009, “ Thermophoresis at a Charged Surface: The Role of Hydrodynamic Slip,” J. Phys.: Condens. Matter, 21(3), p. 035103. [CrossRef] [PubMed]
Putnam, S. A. , Cahill, D. G. , and Wong, G. C. L. , 2007, “ Temperature Dependence of Thermodiffusion in Aqueous Suspensions of Charged Nanoparticles,” Langmuir, 23(18), pp. 9221–9228. [CrossRef] [PubMed]
Vigolo, D. , Brambilla, G. , and Piazza, R. , 2007, “ Thermophoresis of Microemulsion Droplets: Size Dependence of the Soret Effect,” Phys. Rev. E, 75(Pt 1), p. 040401. [CrossRef]
Eslahian, K. A. , Majee, A. , Maskos, M. , and Würger, A. , 2014, “ Specific Salt Effects on Thermophoresis of Charged Colloids,” Soft Matter, 10(12), pp. 1931–1936. [CrossRef] [PubMed]
Roberto, P. , 2004, “ Thermal Forces': Colloids in Temperature Gradients,” J. Phys.: Condens. Matter, 16(38), p. S4195. [CrossRef]
Iacopini, S. , and Piazza, R. , 2003, “ Thermophoresis in Protein Solutions,” EPL Europhys. Lett., 63(2), p. 247. [CrossRef]
Gordon, J. P. , Leite, R. C. C. , Moore, R. S. , Porto, S. P. S. , and Whinnery, J. R. , 1965, “ Long‐Transient Effects in Lasers With Inserted Liquid Samples,” J. Appl. Phys., 36(1), pp. 3–8. [CrossRef]
Rusconi, R. , Isa, L. , and Piazza, R. , 2004, “ Thermal-Lensing Measurement of Particle Thermophoresis in Aqueous Dispersions,” J. Opt. Soc. Am. B, 21(3), pp. 605–616. [CrossRef]
Giglio, M. , and Vendramini, A. , 1974, “ Thermal Lens Effect in a Binary Liquid Mixture: A New Effect,” Appl. Phys. Lett., 25(10), pp. 555–557. [CrossRef]
Duhr, S. , Arduini, S. , and Braun, D. , 2004, “ Thermophoresis of DNA Determined by Microfluidic Fluorescence,” Eur. Phys. J. E, 15(3), pp. 277–286. [CrossRef]
Helden, L. , Eichhorn, R. , and Bechinger, C. , 2015, “ Direct Measurement of Thermophoretic Forces,” Soft Matter, 11(12), pp. 2379–2386. [CrossRef] [PubMed]
Piazza, R. , and Guarino, A. , 2002, “ Soret Effect in Interacting Micellar Solutions,” Phys. Rev. Lett., 88(20), p. 208302. [CrossRef] [PubMed]
Iacopini, S. , Rusconi, R. , and Piazza, R. , 2006, “ The “Macromolecular Tourist”: Universal Temperature Dependence of Thermal Diffusion in Aqueous Colloidal Suspensions,” Eur. Phys. J. E, 19(1), pp. 59–67. [CrossRef]
Dhont, J. K. G. , 2004, “ Thermodiffusion of Interacting Colloids—I: A Statistical Thermodynamics Approach,” J. Chem. Phys., 120(3), pp. 1632–1641. [CrossRef] [PubMed]
Dhont, J. K. G. , 2004, “ Thermodiffusion of Interacting Colloids—II: A Microscopic Approach,” J. Chem. Phys., 120(3), pp. 1642–1653. [CrossRef] [PubMed]
Duhr, S. , and Braun, D. , 2006, “ Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett., 96(16), p. 168301. [CrossRef] [PubMed]
Braibanti, M. , Vigolo, D. , and Piazza, R. , 2008, “ Does Thermophoretic Mobility Depend on Particle Size?,” Phys. Rev. Lett., 100(10), p. 108303. [CrossRef] [PubMed]
Wiegand, S. , 2004, “ Thermal Diffusion in Liquid Mixtures and Polymer Solutions,” J. Phys.: Condens. Matter, 16(10), p. R357. [CrossRef]
Braun, D. , and Libchaber, A. , 2002, “ Trapping of DNA by Thermophoretic Depletion and Convection,” Phys. Rev. Lett., 89(18), p. 188103. [CrossRef] [PubMed]
Weinert, F. M. , and Braun, D. , 2009, “ An Optical Conveyor for Molecules,” Nano Lett., 9(12), pp. 4264–4267. [CrossRef] [PubMed]
Zhang, M. , Ngampeerapong, C. , Redin, D. , Ahmadian, A. , Sychugov, I. , and Linnros, J. , 2018, “ Thermophoresis-Controlled Size-Dependent DNA Translocation Through an Array of Nanopores,” ACS Nano, 12(5), pp. 4574–4582. [CrossRef] [PubMed]
Wienken, C. J. , Baaske, P. , Rothbauer, U. , Braun, D. , and Duhr, S. , 2010, “ Protein-Binding Assays in Biological Liquids Using Microscale Thermophoresis,” Nat. Commun, 1(7), p. 100. [CrossRef] [PubMed]
Jerabek-Willemsen, M. , André, T. , Wanner, R. , Roth, H. M. , Duhr, S. , Baaske, P. , and Breitsprecher, D. , 2014, “ Microscale Thermophoresis: Interaction Analysis and Beyond,” J. Mol. Struct., 1077, pp. 101–113. [CrossRef]
Jiang, H.-R. , Wada, H. , Yoshinaga, N. , and Sano, M. , 2009, “ Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett., 102(20), p. 208301. [CrossRef] [PubMed]
Anderson, J. L. , and Prieve, D. C. , 1984, “ Diffusiophoresis: Migration of Colloidal Particles in Gradients of Solute Concentration,” Sep. Purif. Methods, 13(1), pp. 67–103. [CrossRef]
Zhao, K. , and Mason, T. G. , 2007, “ Directing Colloidal Self-Assembly Through Roughness-Controlled Depletion Attractions,” Phys. Rev. Lett., 99(26), p. 268301. [CrossRef] [PubMed]
Baranov, D. , Fiore, A. , van Huis, M. , Giannini, C. , Falqui, A. , Lafont, U. , Zandbergen, H. , Zanella, M. , Cingolani, R. , and Manna, L. , 2010, “ Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction,” Nano Lett., 10(2), pp. 743–749. [CrossRef] [PubMed]
Edwards, T. D. , and Bevan, M. A. , 2012, “ Depletion-Mediated Potentials and Phase Behavior for Micelles, Macromolecules, Nanoparticles, and Hydrogel Particles,” Langmuir, 28(39), pp. 13816–13823. [CrossRef] [PubMed]
Deng, H.-D. , Li, G.-C. , Liu, H.-Y. , Dai, Q.-F. , Wu, L.-J. , Lan, S. , Gopal, A. V. , Trofimov, V. A. , and Lysak, T. M. , 2012, “ Assembling of Three-Dimensional Crystals by Optical Depletion Force Induced by a Single Focused Laser Beam,” Opt. Express, 20(9), pp. 9616–9623. [CrossRef] [PubMed]
Majee, A. , and Würger, A. , 2012, “ Charging of Heated Colloidal Particles Using the Electrolyte Seebeck Effect,” Phys. Rev. Lett., 108(11), p. 118301. [CrossRef] [PubMed]
Putnam, S. A. , and Cahill, D. G. , 2005, “ Transport of Nanoscale Latex Spheres in a Temperature Gradient,” Langmuir, 21(12), pp. 5317–5323. [CrossRef] [PubMed]
Würger, A. , 2008, “ Transport in Charged Colloids Driven by Thermoelectricity,” Phys. Rev. Lett., 101(10), p. 108302. [CrossRef] [PubMed]
Braun, M. , and Cichos, F. , 2013, “ Optically Controlled Thermophoretic Trapping of Single Nano-Objects,” ACS Nano, 7(12), pp. 11200–11208. [CrossRef] [PubMed]
Braun, M. , Wurger, A. , and Cichos, F. , 2014, “ Trapping of Single Nano-Objects in Dynamic Temperature Fields,” Phys. Chem. Chem. Phys., 16(29), pp. 15207–15213. [CrossRef] [PubMed]
Braun, M. , Bregulla, A. P. , Günther, K. , Mertig, M. , and Cichos, F. , 2015, “ Single Molecules Trapped by Dynamic Inhomogeneous Temperature Fields,” Nano Lett., 15(8), pp. 5499–5505. [CrossRef] [PubMed]
Lin, L. , Peng, X. , Mao, Z. , Wei, X. , Xie, C. , and Zheng, Y. , 2017, “ Interfacial-Entropy-Driven Thermophoretic Tweezers,” Lab Chip, 17(18), pp. 3061–3070. [CrossRef] [PubMed]
Kang, Z. , Chen, J. , Wu, S.-Y. , Chen, K. , Kong, S.-K. , Yong, K.-T. , and Ho, H.-P. , 2015, “ Trapping and Assembling of Particles and Live Cells on Large-Scale Random Gold Nano-Island Substrates,” Sci. Rep., 5, p. 9978. [CrossRef] [PubMed]
Lin, L. , Peng, X. , Mao, Z. , Li, W. , Yogeesh, M. N. , Rajeeva, B. B. , Perillo, E. P. , Dunn, A. K. , Akinwande, D. , and Zheng, Y. , 2016, “ Bubble-Pen Lithography,” Nano Lett., 16(1), pp. 701–708. [CrossRef] [PubMed]
Chen, J. , Cong, H. , Loo, F.-C. , Kang, Z. , Tang, M. , Zhang, H. , Wu, S.-Y. , Kong, S.-K. , and Ho, H.-P. , 2016, “ Thermal Gradient Induced Tweezers for the Manipulation of Particles and Cells,” Sci. Rep., 6, p. 35814. [CrossRef] [PubMed]
Peng, X. , Lin, L. , Hill, E. H. , Kunal, P. , Humphrey, S. M. , and Zheng, Y. , 2018, “ Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids,” J. Phys. Chem. C (epub).
Lin, L. , Peng, X. , Wei, X. , Mao, Z. , Xie, C. , and Zheng, Y. , 2017, “ Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano, 11(3), pp. 3147–3154. [CrossRef] [PubMed]
Lin, L. , Wang, M. , Peng, X. , Lissek, E. N. , Mao, Z. , Scarabelli, L. , Adkins, E. , Coskun, S. , Unalan, H. E. , Korgel, B. A. , Liz-Marzán, L. M. , Florin, E.-L. , and Zheng, Y. , 2018, “ Opto-Thermoelectric Nanotweezers,” Nat. Photonics, 12(4), pp. 195–201. [CrossRef] [PubMed]
Lin, L. , Peng, X. , Wang, M. , Scarabelli, L. , Mao, Z. , Liz-Marzan, L. M. , Becker, M. F. , and Zheng, Y. , 2016, “ Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis,” ACS Nano, 10(10), pp. 9659−–9668. [CrossRef]
Lin, L. , Zhang, J. , Peng, X. , Wu, Z. , Coughlan, A. C. H. , Mao, Z. , Bevan, M. A. , and Zheng, Y. , 2017, “ Opto-Thermophoretic Assembly of Colloidal Matter,” Sci. Adv., 3(9), p. e1700458. [CrossRef] [PubMed]
Peng, X. , Li, J. , Lin, L. , Liu, Y. , and Zheng, Y. , 2018, “ Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels,” ACS Appl. Nano Mater, 1(8), pp. 3998–4004. [CrossRef]
Lin, L. , Peng, X. , and Zheng, Y. , 2017, “ Reconfigurable Opto-Thermoelectric Printing of Colloidal Particles,” Chem. Commun., 53(53), pp. 7357–7360. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic illustration for (a) thermophoresis, (b) depletion, and (c) thermoelectricity

Grahic Jump Location
Fig. 7

Opto-thermophoretic construction of colloidal superstructures in photocurable hydrogels. Schematic illustration of (a) trapping of a colloidal particle in a thermoelectric field and (b) immobilization of the trapped colloidal particle through UV cross-linking. (c) Opto-thermophoretic patterning of 2D close-packed superstructures. The bottom image shows the scanning electron micrograph of the corresponding superstructure after cross-linking of the hydrogel. Reproduced with permission from Peng et al. [80], Copyright 2018 by American Chemical Society.

Grahic Jump Location
Fig. 4

Opto-thermoelectric nanotweezers. (a) Modification of a metal nanoparticle by CTAC adsorption. (b) Schematic view of CTAC micelles and Cl ions. (c) Schematic illustration of working principle of the tweezers. (d) Parallel trapping of six 150 nm gold nanotriangles (AuNTs). (e) In situ dark-field optical spectroscopy of trapped single metal nanoparticles along with simulated spectra. Reproduced with permission from Lin et al. [77], Copyright 2018 by Springer Nature.

Grahic Jump Location
Fig. 5

Reversible assembly of plasmonic nanoparticles. (a) Schematic of the light-directed reversible assembly of AuNTs. (b) Schematic illustration of the migration of a CTA+-modified AuNT from cold to hot region. (b) Schematic illustration of the release or redispersion of an AuNT assembly due to electrostatic repulsive interaction. (d) Optical image of 25 AuNT assemblies in a 5 × 5 square array. (e) Dark-field optical image of 17 AuNT assemblies in an Au pattern. (f) SERS spectra recorded from single AgNS assemblies for different concentrations of rhodamine 6G. Reproduced with permission from Lin et al. [78], Copyright 2016 by American Chemical Society.

Grahic Jump Location
Fig. 6

Opto-thermophoretic assembly of colloidal matter. (a) Schematic illustration of the assembly process. (b) Illustration of interparticle bonding in assembled structure. (c) Diverse types of colloidal structures built by opto-thermophoretic assembly. Reproduced with permission from Lin et al. [79], Copyright 2017 by American Association for the Advancement of Science.

Grahic Jump Location
Fig. 2

Thermophoretic trapping of nano-objects by dynamic temperature fields. Thermophoretic trap with (a) a closed gold structure and (b) an open gold structure with dynamic heating. (c) Trajectory points of a 200 nm PS sphere trapped within the open gold structure. (d) Calculated temperature map of the relative rise generated by a focused laser beam at the rim of the closed gold structure. (e) Calculated relative temperature rise profile (scaled) in the thermophoretic trap at a steady-state (dashed line) and by feedback controlled heating (solid line). The insets show the probability densities of finding a 200 nm polystyrene particle inside the trapping region for a steady-state temperature profile (top) and feedback controlled trapping (bottom) with the same heating power. (f) Examples of different effective trapping potential landscapes generated by different feedback rules. (a)–(c) Reproduced with permission from Braun and Cichos [68], Copyright 2013 by American Chemical Society. (d)–(f) Reproduced with permission from Braun et al. [70], Copyright 2015 by American Chemical Society.

Grahic Jump Location
Fig. 3

Entropy-driven thermophoretic tweezers for manipulation of particles and biological cells. (a) Schematic showing the working principle of the thermophoretic tweezers. (b) Parallel trapping of colloidal particles of different sizes. (c) Schematic illustration of the working mechanisms for thermophoretic trapping of biological cells. (d) Reversible distance control between a pair of yeast cells. (e) Rotation of 1D assembly of three yeast cells. (a) and (b) Reproduced with permission from Lin et al. [71], Copyright 2017 by The Royal Society of Chemistry. (c)–(e) Reproduced with permission from Lin et al. [76], Copyright 2017 by American Chemical Society.

Grahic Jump Location
Fig. 8

Opto-thermoelectric printing: (a) schematic illustration of the opto-thermoelectric trapping, (b) A bright-field optical image of printed TMI pattern of 1 μm PS spheres on the substrate. (c) Schematics, and (d) optical images of the reconfigurable printing of a sad-face pattern into a smiley-face pattern consisting of 2 μm PS spheres. Reproduced with permission from Lin et al. [81], Copyright 2017 The Royal Society of Chemistry.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In