0
Review Article

Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges

[+] Author and Article Information
Yiwei Han

Department of Industrial Engineering
and Systems Engineering,
North Carolina State University,
Raleigh, NC 27695

Jingyan Dong

Department of Industrial Engineering
and Systems Engineering,
North Carolina State University,
Raleigh, NC 27695
e-mail: jdong@ncsu.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received August 20, 2018; final manuscript received October 19, 2018; published online November 29, 2018. Editor: Nicholas Fang.

J. Micro Nano-Manuf 6(4), 040802 (Nov 29, 2018) (20 pages) Paper No: JMNM-18-1029; doi: 10.1115/1.4041934 History: Received August 20, 2018; Revised October 19, 2018

The paper provides an overview of high-resolution electrohydrodynamic (EHD) printing processes for general applications in high-precision micro/nanoscale fabrication and manufacturing. Compared with other printing approaches, EHD printing offers many unique advantages and opportunities in the printing resolution, tunable printing modes, and wide material applicability, which has been successfully applied in numerous applications that include additive manufacturing, printed electronics, biomedical sensors and devices, and optical and photonic devices. In this review, the EHDs-based printing mechanism and the resulting printing modes are described, from which various EHD printing processes were developed. The material applicability and ink printability are discussed to establish the critical factors of the printable inks in EHD printing. A number of EHD printing processes and printing systems that are suitable for micro/nanomanufacturing applications are described in this paper. The recent progresses, opportunities, and challenges of EHD printing are reviewed for a range of potential application areas.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Madou, M. J. , 2002, Fundamentals of Microfabrication: The Science of Miniaturization, CRC Press, Boca Raton, FL.
Stepanova, M. , and Dew, S. , 2011, Nanofabrication: Techniques and Principles, Springer Science & Business Media, New York.
Robinson, G. , and Jackson, M. , 2005, “ A Review of Micro and Nanomachining From a Materials Perspective,” J. Mater. Process. Technol., 167(2–3), pp. 316–337. [CrossRef]
Dornfeld, D. , Min, S. , and Takeuchi, Y. , 2006, “ Recent Advances in Mechanical Micromachining,” CIRP Ann.-Manuf. Technol., 55(2), pp. 745–768. [CrossRef]
Cheng, J. , Liu, C.-S. , Shang, S. , Liu, D. , Perrie, W. , Dearden, G. , and Watkins, K. , 2013, “ A Review of Ultrafast Laser Materials Micromachining,” Opt. Laser Technol., 46, pp. 88–102. [CrossRef]
Hutchings, I. M. , and Martin, G. D. , 2012, Inkjet Technology for Digital Fabrication, Wiley, Hoboken, NJ.
Hoath, S. D. , 2016, Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, Wiley, Hoboken, NJ.
Sirringhaus, H. , Kawase, T. , Friend, R. , Shimoda, T. , Inbasekaran, M. , Wu, W. , and Woo, E. , 2000, “ High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, 290(5499), pp. 2123–2126. [CrossRef] [PubMed]
De Gans, B. J. , Duineveld, P. C. , and Schubert, U. S. , 2004, “ Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater., 16(3), pp. 203–213. [CrossRef]
Singh, M. , Haverinen, H. M. , Dhagat, P. , and Jabbour, G. E. , 2010, “ Inkjet Printing—Process and Its Applications,” Adv. Mater., 22(6), pp. 673–685. [CrossRef] [PubMed]
Basaran, O. A. , Gao, H. , and Bhat, P. P. , 2013, “ Nonstandard Inkjets,” Annu. Rev. Fluid Mech., 45(1), pp. 85–113. [CrossRef]
Percin, G. , and Khuri-Yakub, B. T. , 2002, “ Piezoelectrically Actuated Flextensional Micromachined Ultrasound Droplet Ejectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49(6), pp. 756–766. [CrossRef] [PubMed]
Hyun, W. J. , Secor, E. B. , Hersam, M. C. , Frisbie, C. D. , and Francis, L. F. , 2015, “ High‐Resolution Patterning of Graphene by Screen Printing With a Silicon Stencil for Highly Flexible Printed Electronics,” Adv. Mater., 27(1), pp. 109–115. [CrossRef] [PubMed]
Dungchai, W. , Chailapakul, O. , and Henry, C. S. , 2011, “ A Low-Cost, Simple, and Rapid Fabrication Method for Paper-Based Microfluidics Using Wax Screen-Printing,” Analyst, 136(1), pp. 77–82. [CrossRef] [PubMed]
Hyun, W. J. , Lim, S. , Ahn, B. Y. , Lewis, J. A. , Frisbie, C. D. , and Francis, L. F. , 2015, “ Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils,” ACS Appl. Mater. Interfaces, 7(23), pp. 12619–12624. [CrossRef] [PubMed]
Khan, S. , Lorenzelli, L. , and Dahiya, R. , 2014, “ Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review,” IEEE Sens. J., 15(6), pp. 3164–3185. [CrossRef]
Park, J.-U. , Hardy, M. , Kang, S. J. , Barton, K. , Adair, K. , Kishore Mukhopadhyay, D. , Lee, C. Y. , Strano, M. S. , Alleyne, A. G. , and Georgiadis, J. G. , 2007, “ High-Resolution Electrohydrodynamic Jet Printing,” Nat. Mater., 6(10), pp. 782–789. [CrossRef] [PubMed]
Onses, M. S. , Sutanto, E. , Ferreira, P. M. , Alleyne, A. G. , and Rogers, J. A. , 2015, “ Mechanisms, Capabilities, and Applications of High‐Resolution Electrohydrodynamic Jet Printing,” Small, 11(34), pp. 4237–4266. [CrossRef] [PubMed]
Lee, A. , Jin, H. , Dang, H.-W. , Choi, K.-H. , and Ahn, K. H. , 2013, “ Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing,” Langmuir, 29(44), pp. 13630–13639. [CrossRef] [PubMed]
Zeleny, J. , 1917, “ Instability of Electrified Liquid Surfaces,” Phys. Rev., 10(1), pp. 1–6. [CrossRef]
Cloupeau, M. , and Prunet-Foch, B. , 1994, “ Electrohydrodynamic Spraying Functioning Modes: A Critical Review,” J. Aerosol Sci., 25(6), pp. 1021–1036. [CrossRef]
Fenn, J. B. , Mann, M. , Meng, C. K. , Wong, S. F. , and Whitehouse, C. M. , 1990, “ Electrospray Ionization–Principles and Practice,” Mass Spectrom. Rev., 9(1), pp. 37–70. [CrossRef]
Jaworek, A. , and Krupa, A. , 1999, “ Jet and Drops Formation in Electrohydrodynamic Spraying of Liquids. A Systematic Approach,” Exp. Fluids, 27(1), pp. 43–52. [CrossRef]
Sill, T. J. , and von Recum, H. A. , 2008, “ Electrospinning: Applications in Drug Delivery and Tissue Engineering,” Biomaterials, 29(13), pp. 1989–2006. [CrossRef] [PubMed]
Gries, K. , Vieker, H. , Gölzhäuser, A. , Agarwal, S. , and Greiner, A. , 2012, “ Preparation of Continuous Gold Nanowires by Electrospinning of High-Concentration Aqueous Dispersions of Gold Nanoparticles,” Small, 8(9), pp. 1436–1441. [CrossRef] [PubMed]
Dalton, P. D. , Joergensen, N. T. , Groll, J. , and Moeller, M. , 2008, “ Patterned Melt Electrospun Substrates for Tissue Engineering,” Biomed. Mater., 3(3), p. 034109. [CrossRef] [PubMed]
Sun, D. , Chang, C. , Li, S. , and Lin, L. , 2006, “ Near-Field Electrospinning,” Nano Lett., 6(4), pp. 839–842. [CrossRef] [PubMed]
Jaworek, A. , and Krupa, A. , 1999, “ Classification of the Modes of EHD Spraying,” J. Aerosol Sci., 30(7), pp. 873–893. [CrossRef]
Jaworek, A. , and Krupa, A. , 1998, “ Main Modes of Electrohydrodynamic Spraying of Liquids,” Third International Conference on Multiphase Flow (ICMF), Lyon, France, June 8–12, pp. 8–12. https://www.imp.gda.pl/fileadmin/old_imp/ehd/lyon-98s.pdf
Cloupeau, M. , and Prunet-Foch, B. , 1990, “ Electrostatic Spraying of Liquids: Main Functioning Modes,” J. Electrost., 25(2), pp. 165–184. [CrossRef]
Noymer, P. D. , and Garel, M. , 2000, “ Stability and Atomization Characteristics of Electrohydrodynamic Jets in the Cone-Jet and Multi-Jet Modes,” J. Aerosol Sci., 31(10), pp. 1165–1172. [CrossRef]
Hayati, I. , Bailey, A. , and Tadros, T. F. , 1987, “ Investigations Into the Mechanism of Electrohydrodynamic Spraying of Liquids—Part II: Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone,” J. Colloid Interface Sci., 117(1), pp. 222–230. [CrossRef]
Hayati, I. , Bailey, A. , and Tadros, T. F. , 1987, “ Investigations Into the Mechanisms of Electrohydrodynamic Spraying of Liquids—Part I: Effect of Electric Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization,” J. Colloid Interface Sci., 117(1), pp. 205–221. [CrossRef]
Scheideler, W. J. , and Chen, C.-H. , 2014, “ The Minimum Flow Rate Scaling of Taylor Cone-Jets Issued From a Nozzle,” Appl. Phys. Lett., 104(2), p. 024103. [CrossRef]
Jayasinghe, S. , and Edirisinghe, M. , 2004, “ Electric-Field Driven Jetting From Dielectric Liquids,” Appl. Phys. Lett., 85(18), pp. 4243–4245. [CrossRef]
Marginean, I. , Nemes, P. , Parvin, L. , and Vertes, A. , 2006, “ How Much Charge is There on a Pulsating Taylor Cone?,” Appl. Phys. Lett., 89(6), p. 064104. [CrossRef]
Zhang, X. , and Basaran, O. A. , 1996, “ Dynamics of Drop Formation From a Capillary in the Presence of an Electric Field,” J. Fluid Mech., 326(1), pp. 239–263. [CrossRef]
Lee, M. W. , Kim, N. Y. , and Yoon, S. S. , 2013, “ On Pinchoff Behavior of Electrified Droplets,” J. Aerosol Sci., 57, pp. 114–124. [CrossRef]
Hartman, R. , Brunner, D. , Camelot, D. , Marijnissen, J. , and Scarlett, B. , 2000, “ Jet Break-Up in Electrohydrodynamic Atomization in the Cone-Jet Mode,” J. Aerosol Sci., 31(1), pp. 65–95. [CrossRef]
Hartman, R. , Brunner, D. , Camelot, D. , Marijnissen, J. , and Scarlett, B. , 1999, “ Electrohydrodynamic Atomization in the Cone–Jet Mode Physical Modeling of the Liquid Cone and Jet,” J. Aerosol Sci., 30(7), pp. 823–849. [CrossRef]
Hartman, R. , Marijnissen, J. , and Scarlett, B. , 1997, “ Electro Hydrodynamic Atomization in the Cone-Jet Mode. A Physical Model of the Liquid Cone and Jet,” J. Aerosol Sci., 1001(28), pp. S527–S528. [CrossRef]
Lee, M. , Kang, D. , Kim, N. , Kim, H. , James, S. , and Yoon, S. , 2012, “ A Study of Ejection Modes for Pulsed-DC Electrohydrodynamic Inkjet Printing,” J. Aerosol Sci., 46, pp. 1–6. [CrossRef]
Stachewicz, U. , Yurteri, C. U. , Marijnissen, J. C. , and Dijksman, J. F. , 2009, “ Stability Regime of Pulse Frequency for Single Event Electrospraying,” Appl. Phys. Lett., 95(22), p. 224105. [CrossRef]
Bober, D. B. , and Chen, C.-H. , 2011, “ Pulsating Electrohydrodynamic Cone-Jets: From Choked Jet to Oscillating Cone,” J. Fluid Mech., 689, pp. 552–563. [CrossRef]
Marginean, I. , Parvin, L. , Heffernan, L. , and Vertes, A. , 2004, “ Flexing the Electrified Meniscus: The Birth of a Jet in Electrosprays,” Anal. Chem., 76(14), pp. 4202–4207. [CrossRef] [PubMed]
Choi, H. K. , Park, J.-U. , Park, O. O. , Ferreira, P. M. , Georgiadis, J. G. , and Rogers, J. A. , 2008, “ Scaling Laws for Jet Pulsations Associated With High-Resolution Electrohydrodynamic Printing,” Appl. Phys. Lett., 92(12), p. 123109. [CrossRef]
Song, C. , Rogers, J. A. , Kim, J.-M. , and Ahn, H. , 2015, “ Patterned Polydiacetylene-Embedded Polystyrene Nanofibers Based on Electrohydrodynamic Jet Printing,” Macromol. Res., 23(1), pp. 118–123. [CrossRef]
Fernández de La Mora, J. , 2007, “ The Fluid Dynamics of Taylor Cones,” Annu. Rev. Fluid Mech., 39(1), pp. 217–243. [CrossRef]
Mestel, A. , 1996, “ Electrohydrodynamic Stability of a Highly Viscous Jet,” J. Fluid Mech., 312(1), pp. 311–326. [CrossRef]
Kim, H. J. , and Um, I. C. , 2014, “ Relationship Between Rheology and Electro-Spinning Performance of Regenerated Silk Fibroin Prepared Using Different Degumming Methods,” Korea-Aust. Rheol. J., 26(2), pp. 119–125. [CrossRef]
Lee, S.-H. , Nguyen, X. H. , and Ko, H. S. , 2012, “ Study on Droplet Formation With Surface Tension for Electrohydrodynamic Inkjet Nozzle,” J. Mech. Sci. Technol., 26(5), pp. 1403–1408. [CrossRef]
Barrero, A. , Ganan-Calvo, A. , Davila, J. , Palacios, A. , and Gomez-Gonzalez, E. , 1999, “ The Role of the Electrical Conductivity and Viscosity on the Motions Inside Taylor Cones,” J. Electrost., 47(1–2), pp. 13–26. [CrossRef]
Yu, M. , Ahn, K. H. , and Lee, S. J. , 2016, “ Design Optimization of Ink in Electrohydrodynamic Jet Printing: Effect of Viscoelasticity on the Formation of Taylor Cone Jet,” Mater. Des., 89, pp. 109–115. [CrossRef]
Bae, J. , Lee, J. , and Hyun Kim, S. , 2017, “ Effects of Polymer Properties on Jetting Performance of Electrohydrodynamic Printing,” J. Appl. Polym. Sci., 134(35), p. 45044. [CrossRef]
Park, J. , and Hwang, J. , 2014, “ Fabrication of a Flexible Ag-Grid Transparent Electrode Using ac Based Electrohydrodynamic Jet Printing,” J. Phys. D: Appl. Phys., 47(40), p. 405102. [CrossRef]
Yu, J. , Kim, S. , and Hwang, J. , 2007, “ Effect of Viscosity of Silver Nanoparticle Suspension on Conductive Line Patterned by Electrohydrodynamic Jet Printing,” Appl. Phys. A, 89(1), pp. 157–159. [CrossRef]
Prasetyo, F. D. , Yudistira, H. T. , Nguyen, V. D. , and Byun, D. , 2013, “ Ag Dot Morphologies Printed Using Electrohydrodynamic (EHD) Jet Printing Based on a Drop-on-Demand (DOD) Operation,” J. Micromech. Microeng., 23(9), p. 095028. [CrossRef]
Wei, C. , Qin, H. , Ramírez-Iglesias, N. A. , Chiu, C.-P. , Lee, Y.-S. , and Dong, J. , 2014, “ High-Resolution ac-Pulse Modulated Electrohydrodynamic Jet Printing on Highly Insulating Substrates,” J. Micromech. Microeng., 24(4), p. 045010. [CrossRef]
Lee, D.-Y. , Shin, Y.-S. , Park, S.-E. , Yu, T.-U. , and Hwang, J. , 2007, “ Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet,” Appl. Phys. Lett., 90(8), p. 081905. [CrossRef]
Schneider, J. , Rohner, P. , Thureja, D. , Schmid, M. , Galliker, P. , and Poulikakos, D. , 2016, “ Electrohydrodynamic Nanodrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes,” Adv. Funct. Mater., 26(6), pp. 833–840. [CrossRef]
Kim, B. H. , Onses, M. S. , Lim, J. B. , Nam, S. , Oh, N. , Kim, H. , Yu, K. J. , Lee, J. W. , Kim, J.-H. , and Kang, S.-K. , 2015, “ High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes,” Nano Lett., 15(2), pp. 969–973. [CrossRef] [PubMed]
Lim, S. , Park, S. H. , An, T. K. , Lee, H. S. , and Kim, S. H. , 2016, “ Electrohydrodynamic Printing of Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrenesulfonate) Electrodes With Ratio-Optimized Surfactant,” RSC Adv., 6(3), pp. 2004–2010. [CrossRef]
Park, J.-U. , Lee, J. H. , Paik, U. , Lu, Y. , and Rogers, J. A. , 2008, “ Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing With Applications in Biosensing and Nanomaterials Assembly,” Nano Lett., 8(12), pp. 4210–4216. [CrossRef] [PubMed]
Shigeta, K. , He, Y. , Sutanto, E. , Kang, S. , Le, A.-P. , Nuzzo, R. G. , Alleyne, A. G. , Ferreira, P. M. , Lu, Y. , and Rogers, J. A. , 2012, “ Functional Protein Microarrays by Electrohydrodynamic Jet Printing,” Anal. Chem., 84(22), pp. 10012–10018. [CrossRef] [PubMed]
Wei, C. , and Dong, J. , 2014, “ Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change Inks for High-Resolution Additive Manufacturing,” ASME J. Manuf. Sci. Eng., 136(6), p. 061010. [CrossRef]
Wei, C. , and Dong, J. , 2013, “ Direct Fabrication of High-Resolution Three-Dimensional Polymeric Scaffolds Using Electrohydrodynamic Hot Jet Plotting,” J. Micromech. Microeng., 23(2), p. 025017. [CrossRef]
Han, Y. , and Dong, J. , 2017, “ High-Resolution Direct Printing of Molten-Metal Using Electrohydrodynamic Jet Plotting,” Manuf. Lett., 12, pp. 6–9. [CrossRef]
Han, Y. , and Dong, J. , 2018, “ Electrohydrodynamic (EHD) Printing of Molten Metal Ink for Flexible and Stretchable Conductor With Self‐Healing Capability,” Adv. Mater. Technol., 3(3), p. 1700268. [CrossRef]
Cui, Z. , Han, Y. , Huang, Q. , Dong, J. , and Zhu, Y. , 2018, “ Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics,” Nanoscale, 10(15), pp. 6806–6811. [CrossRef] [PubMed]
An, B. W. , Kim, K. , Kim, M. , Kim, S. Y. , Hur, S. H. , and Park, J. U. , 2015, “ Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces With High Resolutions Using Electrohydrodynamics,” Small, 11(19), pp. 2263–2268. [CrossRef] [PubMed]
Rahman, K. , Khan, A. , Muhammad, N. M. , Jo, J. , and Choi, K.-H. , 2012, “ Fine-Resolution Patterning of Copper Nanoparticles Through Electrohydrodynamic Jet Printing,” J. Micromech. Microeng., 22(6), p. 065012. [CrossRef]
Jayasinghe, S. , Edirisinghe, M. , and Wang, D. , 2004, “ Controlled Deposition of Nanoparticle Clusters by Electrohydrodynamic Atomization,” Nanotechnology, 15(11), p. 1519. [CrossRef]
Kang, D. , Lee, M. , Kim, H. , James, S. , and Yoon, S. , 2011, “ Electrohydrodynamic Pulsed-Inkjet Characteristics of Various Inks Containing Aluminum Particles,” J. Aerosol Sci., 42(10), pp. 621–630. [CrossRef]
Wang, D. , Jayasinghe, S. , and Edirisinghe, M. , 2005, “ High Resolution Print-Patterning of a Nano-Suspension,” J. Nanopart. Res., 7(2–3), pp. 301–306. [CrossRef]
Wang, D. , Edirisinghe, M. , and Jayasinghe, S. , 2006, “ Solid Freeform Fabrication of Thin‐Walled Ceramic Structures Using an Electrohydrodynamic Jet,” J. Am. Ceram. Soc., 89(5), pp. 1727–1729. [CrossRef]
Sabaeian, M. , and Khaledi-Nasab, A. , 2012, “ Size-Dependent Intersubband Optical Properties of Dome-Shaped InAs/GaAs Quantum Dots With Wetting Layer,” Appl. Opt., 51(18), pp. 4176–4185. [CrossRef] [PubMed]
Khaledi-Nasab, A. , Sabaeian, M. , Sahrai, M. , and Fallahi, V. , 2014, “ Kerr Nonlinearity Due to Intersubband Transitions in a Three-Level InAs/GaAs Quantum Dot: The Impact of a Wetting Layer on Dispersion Curves,” J. Opt., 16(5), p. 055004. [CrossRef]
Kim, J. Y. , Voznyy, O. , Zhitomirsky, D. , and Sargent, E. H. , 2013, “ 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances,” Adv. Mater., 25(36), pp. 4986–5010. [CrossRef] [PubMed]
Gupta, A. , Seifalian, A. M. , Ahmad, Z. , Edirisinghe, M. J. , and Winslet, M. C. , 2007, “ Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Scaffolds,” J. Bioact. Compat. Polym., 22(3), pp. 265–280. [CrossRef]
Poellmann, M. J. , and Johnson, A. J. W. , 2014, “ Multimaterial Polyacrylamide: Fabrication With Electrohydrodynamic Jet Printing, Applications, and Modeling,” Biofabrication, 6(3), p. 035018. [CrossRef] [PubMed]
Reneker, D. H. , and Yarin, A. L. , 2008, “ Electrospinning Jets and Polymer Nanofibers,” Polymer, 49(10), pp. 2387–2425. [CrossRef]
Nothnagle, C. , Baptist, J. R. , Sanford, J. , Lee, W. H. , Popa, D. O. , and Wijesundara, M. B. , “ EHD Printing of PEDOT: PSS Inks for Fabricating Pressure and Strain Sensor Arrays on Flexible Substrates,” Proc. SPIE, 9494, p. 949403.
Park, S. H. , Kim, J. , Park, C. E. , Lee, J. , Lee, H. S. , Lim, S. , and Kim, S. H. , 2016, “ Optimization of Electrohydrodynamic-Printed Organic Electrodes for Bottom-Contact Organic Thin Film Transistors,” Org. Electron., 38, pp. 48–54. [CrossRef]
Han, Y. , Wei, C. , and Dong, J. , 2015, “ Droplet Formation and Settlement of Phase-Change Ink in High Resolution Electrohydrodynamic (EHD) 3D Printing,” J. Manuf. Processes, 20 (pt. 3), pp. 485–491. [CrossRef]
Theron, S. , Zussman, E. , and Yarin, A. , 2004, “ Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions,” Polymer, 45(6), pp. 2017–2030. [CrossRef]
Lee, M.-W. , Lee, M.-Y. , Choi, J.-C. , Park, J.-S. , and Song, C.-K. , 2010, “ Fine Patterning of Glycerol-Doped PEDOT: PSS on Hydrophobic PVP Dielectric With Ink Jet for Source and Drain Electrode of OTFTs,” Org. Electron., 11(5), pp. 854–859. [CrossRef]
Bihar, E. , Roberts, T. , Saadaoui, M. , Herv, J.-S. , and Song, C.-K. , 2010, “ Fine Patterning of Glycerol‐Printed PEDOT: PSS Electrodes on Paper for Electrocardiography,” Adv. Healthcare Mater., 6(6), p. 1601167. [CrossRef]
Vuorinen, T. , Niittynen, J. , Kankkunen, T. , Kraft, T. M. , and Mäntysalo, M. , 2016, “ Inkjet-Printed Graphene/PEDOT: PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate,” Sci. Rep., 6, p. 35289. [CrossRef] [PubMed]
Jang, S. , Kim, Y. , and Oh, J. H. , 2016, “ Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution,” J. Electron. Mater., 45(4), pp. 2291–2298. [CrossRef]
Onses, M. S. , Song, C. , Williamson, L. , Sutanto, E. , Ferreira, P. M. , Alleyne, A. G. , Nealey, P. F. , Ahn, H. , and Rogers, J. A. , 2013, “ Hierarchical Patterns of Three-Dimensional Block-Copolymer Films Formed by Electrohydrodynamic Jet Printing and Self-Assembly,” Nat. Nanotechnol., 8(9), pp. 667–675. [CrossRef] [PubMed]
Lee, J.-G. , Cho, H.-J. , Huh, N. , Ko, C. , Lee, W.-C. , Jang, Y.-H. , Lee, B. S. , Kang, I. S. , and Choi, J.-W. , 2006, “ Electrohydrodynamic (EHD) Dispensing of Nanoliter DNA Droplets for Microarrays,” Biosens. Bioelectron., 21(12), pp. 2240–2247. [CrossRef] [PubMed]
Boley, J. W. , White, E. L. , Chiu, G. T. C. , and Kramer, R. K. , 2014, “ Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics,” Adv. Funct. Mater., 24(23), pp. 3501–3507. [CrossRef]
Lee, T.-M. , Kang, T. G. , Yang, J.-S. , Jo, J.-D. , Kim, K.-Y. , Choi, B.-O. , and Kim, D.-S. , 2007, “ 3D Metal Microstructure Fabrication Using a Molten Metal DoD Inkjet System,” Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2007), Lyon, France, June 10–14, pp. 1637–1640.
Wang, Q. , Yu, Y. , Yang, J. , and Liu, J. , 2015, “ Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual‐Trans Printing,” Adv. Mater., 27(44), pp. 7109–7116. [CrossRef] [PubMed]
Lee, T.-M. , Kang, T. G. , Yang, J. S. , Jo, J. , Kim, K.-Y. , Choi, B.-O. , and Kim, D.-S. , 2008, “ Gap Adjustable Molten Metal DoD Inkjet System With Cone-Shaped Piston Head,” ASME J. Manuf. Sci. Eng., 130(3), p. 031113. [CrossRef]
Murr, L. E. , Gaytan, S. M. , Ramirez, D. A. , Martinez, E. , Hernandez, J. , Amato, K. N. , Shindo, P. W. , Medina, F. R. , and Wicker, R. B. , 2012, “ Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,” J. Mater. Sci. Technol., 28(1), pp. 1–14. [CrossRef]
Agarwala, M. , Bourell, D. , Beaman, J. , Marcus, H. , and Barlow, J. , 1995, “ Direct Selective Laser Sintering of Metals,” Rapid Prototyping J., 1(1), pp. 26–36. [CrossRef]
Langley, D. , Giusti, G. , Mayousse, C. , Celle, C. , Bellet, D. , and Simonato, J.-P. , 2013, “ Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review,” Nanotechnology, 24(45), p. 452001. [CrossRef] [PubMed]
Yao, S. , and Zhu, Y. , 2015, “ Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices,” Adv. Mater., 27(9), pp. 1480–1511. [CrossRef] [PubMed]
Lee, H. , Seong, B. , Kim, J. , Jang, Y. , and Byun, D. , 2014, “ Direct Alignment and Patterning of Silver Nanowires by Electrohydrodynamic Jet Printing,” Small, 10(19), pp. 3918–3922. [CrossRef] [PubMed]
Lee, S. , An, K. , Son, S. , and Choi, J. , 2013, “ Satellite/Spray Suppression in Electrohydrodynamic Printing With a Gated Head,” Appl. Phys. Lett., 103(13), p. 133506. [CrossRef]
Xu, L. , and Sun, D. , 2013, “ Electrohydrodynamic Printing Under Applied Pole-Type Nozzle Configuration,” Appl. Phys. Lett., 102(2), p. 024101. [CrossRef]
Choi, J. , Kim, Y.-J. , Lee, S. , Son, S. U. , Ko, H. S. , Nguyen, V. D. , and Byun, D. , 2008, “ Drop-on-Demand Printing of Conductive Ink by Electrostatic Field Induced Inkjet Head,” Appl. Phys. Lett., 93(19), p. 193508. [CrossRef]
Kim, H. , Song, J. , Chung, J. , and Hong, D. , 2010, “ Onset Condition of Pulsating Cone-Jet Mode of Electrohydrodynamic Jetting for Plane, Hole, and Pin Type Electrodes,” J. Appl. Phys., 108(10), p. 102804. [CrossRef]
Tse, L. , and Barton, K. , 2015, “ Airflow Assisted Printhead for High-Resolution Electrohydrodynamic Jet Printing Onto Non-Conductive and Tilted Surfaces,” Appl. Phys. Lett., 107(5), p. 054103. [CrossRef]
Tse, L. , and Barton, K. , 2014, “ A Field Shaping Printhead for High-Resolution Electrohydrodynamic Jet Printing Onto Non-Conductive and Uneven Surfaces,” Appl. Phys. Lett., 104(14), p. 143510. [CrossRef]
Han, Y. , and Dong, J. , 2017, “ Design, Modeling and Testing of Integrated Ring Extractor for High Resolution Electrohydrodynamic (EHD) 3D Printing,” J. Micromech. Microeng., 27(3), p. 035005. [CrossRef]
Pan, Y. , Huang, Y. , Guo, L. , Ding, Y. , and Yin, Z. , 2015, “ Addressable Multi-Nozzle Electrohydrodynamic Jet Printing With High Consistency by Multi-Level Voltage Method,” AIP Adv., 5(4), p. 047108. [CrossRef]
Han, Y. , Wei, C. , and Dong, J. , 2014, “ Super-Resolution Electrohydrodynamic (EHD) 3D Printing of Micro-Structures Using Phase-Change Inks,” Manuf. Lett., 2(4), pp. 96–99. [CrossRef]
Kim, S.-Y. , Kim, Y. , Park, J. , and Hwang, J. , 2010, “ Design and Evaluation of Single Nozzle With a Non-Conductive Tip for Reducing Applied Voltage and Pattern Width in Electrohydrodynamic Jet Printing (EHDP),” J. Micromech. Microeng., 20(5), p. 055009. [CrossRef]
Barton, K. , Mishra, S. , Shorter, K. A. , Alleyne, A. , Ferreira, P. , and Rogers, J. , 2010, “ A Desktop Electrohydrodynamic Jet Printing System,” Mechatronics, 20(5), pp. 611–616. [CrossRef]
Khan, A. , Rahman, K. , Kim, D. S. , and Choi, K. H. , 2012, “ Direct Printing of Copper Conductive Micro-Tracks by Multi-Nozzle Electrohydrodynamic Inkjet Printing Process,” J. Mater. Process. Technol., 212(3), pp. 700–706. [CrossRef]
Khan, A. , Rahman, K. , Hyun, M.-T. , Kim, D.-S. , and Choi, K.-H. , 2011, “ Multi-Nozzle Electrohydrodynamic Inkjet Printing of Silver Colloidal Solution for the Fabrication of Electrically Functional Microstructures,” Appl. Phys. A, 104(4), p. 1113. [CrossRef]
Lee, J.-S. , Kim, S.-Y. , Kim, Y.-J. , Park, J. , Kim, Y. , Hwang, J. , and Kim, Y.-J. , 2008, “ Design and Evaluation of a Silicon Based Multi-Nozzle for Addressable Jetting Using a Controlled Flow Rate in Electrohydrodynamic Jet Printing,” Appl. Phys. Lett., 93(24), p. 243114. [CrossRef]
Sutanto, E. , Shigeta, K. , Kim, Y. , Graf, P. , Hoelzle, D. , Barton, K. , Alleyne, A. , Ferreira, P. , and Rogers, J. , 2012, “ A Multimaterial Electrohydrodynamic Jet (E-Jet) Printing System,” J. Micromech. Microeng., 22(4), p. 045008. [CrossRef]
Park, J. , Kim, B. , Kim, S.-Y. , and Hwang, J. , 2014, “ Prediction of Drop-on-Demand (DOD) Pattern Size in Pulse Voltage-Applied Electrohydrodynamic (EHD) Jet Printing of Ag Colloid Ink,” Appl. Phys. A, 117(4), pp. 2225–2234. [CrossRef]
Galliker, P. , Schneider, J. , Eghlidi, H. , Kress, S. , Sandoghdar, V. , and Poulikakos, D. , 2012, “ Direct Printing of Nanostructures by Electrostatic Autofocussing of Ink Nanodroplets,” Nat. Commun., 3, p. 890. [CrossRef] [PubMed]
Xing, B. , Zuo, C. C. , Huang, F. L. , Lu, Y. B. , and Hu, G. S. , 2017, “ Effect of Electrode Distance on Jetting Behavior of Non-Particle Nano Ag Conductive Ink in Electrohydrodynamic Micro Jet Printing,” Mater. Sci. Forum, 893, pp. 118–121. [CrossRef]
Chen, C.-H. , Saville, D. , and Aksay, I. , 2006, “ Electrohydrodynamic “Drop-and-Place” Particle Deployment,” Appl. Phys. Lett., 88(15), p. 154104. [CrossRef]
Mishra, S. , Barton, K. L. , Alleyne, A. G. , Ferreira, P. M. , and Rogers, J. A. , 2010, “ High-Speed and Drop-on-Demand Printing With a Pulsed Electrohydrodynamic Jet,” J. Micromech. Microeng., 20(9), p. 095026. [CrossRef]
Kim, J. , Oh, H. , and Kim, S. S. , 2008, “ Electrohydrodynamic Drop-on-Demand Patterning in Pulsed Cone-Jet Mode at Various Frequencies,” J. Aerosol Sci., 39(9), pp. 819–825. [CrossRef]
Lee, S. , Song, J. , Kim, H. , and Chung, J. , 2012, “ Time Resolved Imaging of Electrohydrodynamic Jetting on Demand Induced by Square Pulse Voltage,” J. Aerosol Sci., 52, pp. 89–97. [CrossRef]
Rahman, K. , Khan, A. , Nam, N. M. , Choi, K. H. , and Kim, D.-S. , 2011, “ Study of Drop-on-Demand Printing Through Multi-Step Pulse Voltage,” Int. J. Precis. Eng. Manuf., 12(4), pp. 663–669. [CrossRef]
Lee, M. W. , An, S. , Kim, N. Y. , Seo, J. H. , Huh, J.-Y. , Kim, H. Y. , and Yoon, S. S. , 2013, “ Effects of Pulsing Frequency on Characteristics of Electrohydrodynamic Inkjet Using Micro-Al and Nano-Ag Particles,” Exp. Therm. Fluid Sci., 46, pp. 103–110. [CrossRef]
Xu, L. , Wang, X. , Lei, T. , Sun, D. , and Lin, L. , 2011, “ Electrohydrodynamic Deposition of Polymeric Droplets Under Low-Frequency Pulsation,” Langmuir, 27(10), pp. 6541–6548. [CrossRef] [PubMed]
Wei, C. , Qin, H. , Chiu, C.-P. , Lee, Y.-S. , and Dong, J. , 2015, “ Drop-on-Demand E-Jet Printing of Continuous Interconnects With AC-Pulse Modulation on Highly Insulating Substrates,” J. Manuf. Syst., 37, pp. 505–510. [CrossRef]
Kim, Y.-J. , Kim, S. , Hwang, J. , and Kim, Y.-J. , 2013, “ Drop-on-Demand Hybrid Printing Using a Piezoelectric MEMS Printhead at Various Waveforms, High Voltages and Jetting Frequencies,” J. Micromech. Microeng., 23(6), p. 065011. [CrossRef]
Zheng, G. , Sun, L. , Wang, X. , Wei, J. , Xu, L. , Liu, Y. , Zheng, J. , and Liu, J. , 2016, “ Electrohydrodynamic Direct-Writing Microfiber Patterns Under Stretching,” Appl. Phys. A, 122(2), p. 112. [CrossRef]
Park, J. , Park, J.-W. , Nasrabadi, A. M. , and Hwang, J. , 2016, “ Methodology to Set Up Nozzle-to-Substrate Gap for High Resolution Electrohydrodynamic Jet Printing,” Appl. Phys. Lett., 109(13), p. 134104. [CrossRef]
Jang, Y. , Hartarto Tambunan, I. , Tak, H. , Dat Nguyen, V. , Kang, T. , and Byun, D. , 2013, “ Non-Contact Printing of High Aspect Ratio Ag Electrodes for Polycrystalline Silicone Solar Cell With Electrohydrodynamic Jet Printing,” Appl. Phys. Lett., 102(12), p. 123901. [CrossRef]
Wu, Y. , Wang, Z. , Ying Hsi Fuh, J. , San Wong, Y. , Wang, W. , and San Thian, E. , 2017, “ Direct E‐Jet Printing of Three‐Dimensional Fibrous Scaffold for Tendon Tissue Engineering,” J. Biomed. Mater. Res., Part B, 105(3), pp. 616–627. [CrossRef]
Jeong, S. , Lee, S. H. , Jo, Y. , Lee, S. S. , Seo, Y.-H. , Ahn, B. W. , Kim, G. , Jang, G.-E. , Park, J.-U. , and Ryu, B.-H. , 2013, “ Air-Stable, Surface-Oxide Free Cu Nanoparticles for Highly Conductive Cu Ink and Their Application to Printed Graphene Transistors,” J. Mater. Chem. C, 1(15), pp. 2704–2710. [CrossRef]
Jeong, Y. J. , Lee, X. , Bae, J. , Jang, J. , Joo, S. W. , Lim, S. , Kim, S. H. , and Park, C. E. , 2016, “ Direct Patterning of Conductive Carbon Nanotube/Polystyrene Sulfonate Composites Via Electrohydrodynamic Jet Printing for Use in Organic Field-Effect Transistors,” J. Mater. Chem. C, 4(22), pp. 4912–4919. [CrossRef]
Seong, B. , Yoo, H. , Nguyen, V. D. , Jang, Y. , Ryu, C. , and Byun, D. , 2014, “ Metal-Mesh Based Transparent Electrode on a 3-D Curved Surface by Electrohydrodynamic Jet Printing,” J. Micromech. Microeng., 24(9), p. 097002. [CrossRef]
Wei, C. , and Dong, J. , 2014, “ Hybrid Hierarchical Fabrication of Three-Dimensional Scaffolds,” J. Manuf. Processes, 16(2), pp. 257–263. [CrossRef]
Zhang, B. , Seong, B. , Nguyen, V. , and Byun, D. , 2016, “ 3D Printing of High-Resolution PLA-Based Structures by Hybrid Electrohydrodynamic and Fused Deposition Modeling Techniques,” J. Micromech. Microeng., 26(2), p. 025015. [CrossRef]
Chen, C.-H. , Saville, D. , and Aksay, I. , 2006, “ Scaling Laws for Pulsed Electrohydrodynamic Drop Formation,” Appl. Phys. Lett., 89(12), p. 124103. [CrossRef]
Du, W. , and Chaudhuri, S. , 2017, “ A Multiphysics Model for Charged Liquid Droplet Breakup in Electric Fields,” Int. J. Multiphase Flow, 90, pp. 46–56. [CrossRef]
Kim, Y.-J. , Choi, J. , Son, S. U. , Lee, S. , Nguyen, X. H. , Nguyen, V. D. , Byun, D. , and Ko, H. S. , 2010, “ Comparative Study on Ejection Phenomena of Droplets From Electro-Hydrodynamic Jet by Hydrophobic and Hydrophilic Coatings of Nozzles,” Jpn. J. Appl. Phys., 49(6), p. 060217. [CrossRef]
Yudistira, H. T. , Nguyen, V. D. , Dutta, P. , and Byun, D. , 2010, “ Flight Behavior of Charged Droplets in Electrohydrodynamic Inkjet Printing,” Appl. Phys. Lett., 96(2), p. 023503. [CrossRef]
Collins, R. T. , Sambath, K. , Harris, M. T. , and Basaran, O. A. , 2013, “ Universal Scaling Laws for the Disintegration of Electrified Drops,” Proc. Natl. Acad. Sci., 110(13), pp. 4905–4910.
Collins, R. T. , Harris, M. T. , and Basaran, O. A. , 2007, “ Breakup of Electrified Jets,” J. Fluid Mech., 588, pp. 75–129. [CrossRef]
Mestel, A. , 1994, “ The Electrohydrodynamic Cone-Jet at High Reynolds Number,” J. Aerosol Sci., 25(6), pp. 1037–1047. [CrossRef]
Ganan-Calvo, A. M. , 1997, “ On the Theory of Electrohydrodynamically Driven Capillary Jets,” J. Fluid Mech., 335, pp. 165–188. [CrossRef]
Wei, W. , Gu, Z. , Wang, S. , Zhang, Y. , Lei, K. , and Kase, K. , 2012, “ Numerical Simulation of the Cone–Jet Formation and Current Generation in Electrostatic Spray—Modeling as Regards Space Charged Droplet Effect,” J. Micromech. Microeng., 23(1), p. 015004. [CrossRef]
Yan, F. , Farouk, B. , and Ko, F. , 2003, “ Numerical Modeling of an Electrostatically Driven Liquid Meniscus in the Cone–Jet Mode,” J. Aerosol Sci., 34(1), pp. 99–116. [CrossRef]
Pannier, C. P. , Diagne, M. , Spiegel, I. A. , Hoelzle, D. J. , and Barton, K. , 2017, “ A Dynamical Model of Drop Spreading in Electrohydrodynamic Jet Printing,” ASME J. Manuf. Sci. Eng., 139(11), p. 111008. [CrossRef]
Rahmat, A. , Koç, B. , and Yildiz, M. , 2017, “ A Systematic Study on Numerical Simulation of Electrified Jet Printing,” Addit. Manuf., 18, pp. 15–21. [CrossRef]
Tran, S. B. Q. , Byun, D. , Nguyen, V. D. , and Kang, T. S. , 2009, “ Liquid Meniscus Oscillation and Drop Ejection by ac Voltage, Pulsed dc Voltage, and Superimposing dc to ac Voltages,” Phys. Rev. E, 80(2), p. 026318. [CrossRef]
Nguyen, V. D. , and Byun, D. , 2009, “ Mechanism of Electrohydrodynamic Printing Based on ac Voltage Without a Nozzle Electrode,” Appl. Phys. Lett., 94(17), p. 173509. [CrossRef]
Ashley, S. , 1991, “ Rapid Prototyping Systems,” Mech. Eng., 113(4), pp. 34–43.
Gibson, I. , Rosen, D. W. , and Stucker, B. , 2010, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer-Verlag, Berlin.
Kruth, J.-P. , Leu, M.-C. , and Nakagawa, T. , 1998, “ Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Ann., 47(2), pp. 525–540. [CrossRef]
Melchels, F. P. , Domingos, M. A. , Klein, T. J. , Malda, J. , Bartolo, P. J. , and Hutmacher, D. W. , 2012, “ Additive Manufacturing of Tissues and Organs,” Prog. Polym. Sci., 37(8), pp. 1079–1104. [CrossRef]
Kruth, J.-P. , 1991, “ Material Incress Manufacturing by Rapid Prototyping Techniques,” CIRP Ann.-Manuf. Technol., 40(2), pp. 603–614. [CrossRef]
An, B. W. , Kim, K. , Lee, H. , Kim, S. Y. , Shim, Y. , Lee, D. Y. , Song, J. Y. , and Park, J. U. , 2015, “ High‐Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet With Multiple Functional Inks,” Adv. Mater., 27(29), pp. 4322–4328. [CrossRef] [PubMed]
Brown, T. D. , Dalton, P. D. , and Hutmacher, D. W. , 2011, “ Direct Writing by Way of Melt Electrospinning,” Adv. Mater., 23(47), pp. 5651–5657. [CrossRef] [PubMed]
Zhao, X. , He, J. , Xu, F. , Liu, Y. , and Li, D. , 2016, “ Electrohydrodynamic Printing: A Potential Tool for High-Resolution Hydrogel/Cell Patterning,” Virtual Phys. Prototyping, 11(1), pp. 57–63. [CrossRef]
Jayasinghe, S. N. , Qureshi, A. N. , and Eagles, P. A. , 2006, “ Electrohydrodynamic Jet Processing: An Advanced Electric‐Field‐Driven Jetting Phenomenon for Processing Living Cells,” Small, 2(2), pp. 216–219. [CrossRef] [PubMed]
Eagles, P. A. , Qureshi, A. N. , and Jayasinghe, S. N. , 2006, “ Electrohydrodynamic Jetting of Mouse Neuronal Cells,” Biochem. J., 394(2), pp. 375–378. [CrossRef] [PubMed]
Faulkner-Jones, A. , Greenhough, S. , King, J. A. , Gardner, J. , Courtney, A. , and Shu, W. , 2013, “ Development of a Valve-Based Cell Printer for the Formation of Human Embryonic Stem Cell Spheroid Aggregates,” Biofabrication, 5(1), p. 015013. [CrossRef] [PubMed]
Mehta, P. , Haj-Ahmad, R. , Rasekh, M. , Arshad, M. S. , Smith, A. , van der Merwe, S. M. , Li, X. , Chang, M.-W. , and Ahmad, Z. , 2017, “ Pharmaceutical and Biomaterial Engineering Via Electrohydrodynamic Atomization Technologies,” Drug Discovery Today, 22(1), pp. 157–165. [CrossRef] [PubMed]
Kim, J.-H. , Lee, D.-Y. , Hwang, J. , and Jung, H.-I. , 2009, “ Direct Pattern Formation of Bacterial Cells Using Micro-Droplets Generated by Electrohydrodynamic Forces,” Microfluid. Nanofluid., 7(6), pp. 829–839. [CrossRef]
Gasperini, L. , Maniglio, D. , Motta, A. , and Migliaresi, C. , 2014, “ An Electrohydrodynamic Bioprinter for Alginate Hydrogels Containing Living Cells,” Tissue Eng., Part C, 21(2), pp. 123–132. [CrossRef]
Ringeisen, B. R. , Othon, C. M. , Barron, J. A. , Young, D. , and Spargo, B. J. , 2006, “ Jet‐Based Methods to Print Living Cells,” Biotechnol. J.: Healthcare Nutr. Technol., 1(9), pp. 930–948.
Xu, T. , Jin, J. , Gregory, C. , Hickman, J. J. , and Boland, T. , 2005, “ Inkjet Printing of Viable Mammalian Cells,” Biomaterials, 26(1), pp. 93–99. [CrossRef] [PubMed]
Liu, Y. , Jiang, C. , Liu, Y. , Li, D. , and Hu, Q. , “ Electrohydrodynamic Direct Printing on Hydrogel: A Novel Method to Obtain Fine Fibers,” Proc. SPIE, 9930, p. 993010.
Poellmann, M. J. , Barton, K. L. , Mishra, S. , and Johnson, A. J. W. , 2011, “ Patterned Hydrogel Substrates for Cell Culture With Electrohydrodynamic Jet Printing,” Macromol. Biosci., 11(9), pp. 1164–1168. [CrossRef] [PubMed]
Hanson Shepherd, J. N. , Parker, S. T. , Shepherd, R. F. , Gillette, M. U. , Lewis, J. A. , and Nuzzo, R. G. , 2011, “ 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures,” Adv. Funct. Mater., 21(1), pp. 47–54. [CrossRef] [PubMed]
Gasperini, L. , Maniglio, D. , and Migliaresi, C. , 2013, “ Microencapsulation of Cells in Alginate Through an Electrohydrodynamic Process,” J. Bioact. Compat. Polym., 28(5), pp. 413–425. [CrossRef]
Liaudanskaya, V. , Gasperini, L. , Maniglio, D. , Motta, A. , and Migliaresi, C. , 2015, “ Assessing the Impact of Electrohydrodynamic Jetting on Encapsulated Cell Viability, Proliferation, and Ability to Self-Assemble in Three-Dimensional Structures,” Tissue Eng., Part C, 21(6), pp. 631–638. [CrossRef]
Xu, T. , Petridou, S. , Lee, E. H. , Roth, E. A. , Vyavahare, N. R. , Hickman, J. J. , and Boland, T. , 2004, “ Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method,” Biotechnol. Bioeng., 85(1), pp. 29–33. [CrossRef] [PubMed]
Ahmad, Z. , Rasekh, M. , and Edirisinghe, M. , 2010, “ Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites,” Macromol. Mater. Eng., 295(4), pp. 315–319. [CrossRef]
Kim, H. S. , Lee, D. Y. , Park, J. H. , Kim, J. H. , Hwang, J. H. , and Jung, H. I. , 2007, “ Optimization of Electrohydrodynamic Writing Technique to Print Collagen,” Exp. Tech., 31(4), pp. 15–19. [CrossRef]
Cheung, H.-Y. , Lau, K.-T. , Lu, T.-P. , and Hui, D. , 2007, “ A Critical Review on Polymer-Based Bio-Engineered Materials for Scaffold Development,” Composites, Part B, 38(3), pp. 291–300. [CrossRef]
George, M. C. , and Braun, P. V. , 2009, “ Multicompartmental Materials by Electrohydrodynamic Cojetting,” Angew. Chem. Int. Ed., 48(46), pp. 8606–8609. [CrossRef]
Li, J. L. , Cai, Y. L. , Guo, Y. L. , Fuh, J. Y. H. , Sun, J. , Hong, G. S. , Lam, R. N. , Wong, Y. S. , Wang, W. , and Tay, B. Y. , 2014, “ Fabrication of Three-Dimensional Porous Scaffolds With Controlled Filament Orientation and Large Pore Size Via an Improved E-Jetting Technique,” J. Biomed. Mater. Res., Part B, 102(4), pp. 651–658. [CrossRef]
Wu, Y. , Fuh, J. , Wong, Y. , and Sun, J. , “ Fabrication of 3D Scaffolds Via E-Jet Printing for Tendon Tissue Repair,” ASME Paper No. MSEC2015-9367.
Wang, H. , Vijayavenkataraman, S. , Wu, Y. , Shu, Z. , Sun, J. , and Fuh, J. Y. H. , 2016, “ Investigation of Process Parameters of Electrohydro-Dynamic Jetting for 3D Printed PCL Fibrous Scaffolds With Complex Geometries,” Int. J. Bioprint., 2(1), pp. 63–71.
Liu, T. , Huang, R. , Zhong, J. , Yang, Y. , Tan, Z. , and Tan, W. , 2017, “ Control of Cell Proliferation in E-Jet 3D-Printed Scaffolds for Tissue Engineering Applications: The Influence of the Cell Alignment Angle,” J. Mater. Chem. B, 5(20), pp. 3728–3738. [CrossRef]
Hwang, T. H. , Kim, Y. J. , Chung, H. , and Ryu, W. , 2016, “ Motionless Electrohydrodynamic (EHD) Printing of Biodegradable Polymer Micro Patterns,” Microelectron. Eng., 161, pp. 43–51. [CrossRef]
Awais, M. N. , Kim, H. C. , Doh, Y. H. , and Choi, K. H. , 2013, “ ZrO2 Flexible Printed Resistive (Memristive) Switch Through Electrohydrodynamic Printing Process,” Thin Solid Films, 536, pp. 308–312. [CrossRef]
Khan, S. , Doh, Y. H. , Khan, A. , Rahman, A. , Choi, K. H. , and Kim, D. S. , 2011, “ Direct Patterning and Electrospray Deposition Through EHD for Fabrication of Printed Thin Film Transistors,” Curr. Appl. Phys., 11(1), pp. S271–S279. [CrossRef]
Gao-Feng, Z. , Yan-Bo, P. , Xiang, W. , Jian-Yi, Z. , and Dao-Heng, S. , 2014, “ Electrohydrodynamic Direct—Writing of Conductor—Insulator-Conductor Multi-Layer Interconnection,” Chin. Phys. B, 23(6), p. 066102. [CrossRef]
Wang, X. , Xu, L. , Zheng, G. , Cheng, W. , and Sun, D. , 2012, “ Pulsed Electrohydrodynamic Printing of Conductive Silver Patterns on Demand,” Sci. China Technol. Sci., 55(6), pp. 1603–1607. [CrossRef]
Wang, K. , and Stark, J. P. , 2010, “ Direct Fabrication of Electrically Functional Microstructures by Fully Voltage-Controlled Electrohydrodynamic Jet Printing of Silver Nano-Ink,” Appl. Phys. A, 99(4), pp. 763–766. [CrossRef]
Kim, S.-Y. , Kim, K. , Hwang, Y. , Park, J. , Jang, J. , Nam, Y. , Kang, Y. , Kim, M. , Park, H. , and Lee, Z. , 2016, “ High-Resolution Electrohydrodynamic Inkjet Printing of Stretchable Metal Oxide Semiconductor Transistors With High Performance,” Nanoscale, 8(39), pp. 17113–17121. [CrossRef] [PubMed]
Qin, H. , Cai, Y. , Dong, J. , and Lee, Y.-S. , 2017, “ Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing With Silver Nanoinks,” ASME J. Manuf. Sci. Eng., 139(3), p. 031011. [CrossRef]
Pikul, J. H. , Graf, P. , Mishra, S. , Barton, K. , Kim, Y.-K. , Rogers, J. A. , Alleyne, A. , Ferreira, P. M. , and King, W. P. , 2011, “ High Precision Electrohydrodynamic Printing of Polymer Onto Microcantilever Sensors,” IEEE Sensors J., 11(10), pp. 2246–2253. [CrossRef]
Lee, S. , Kim, J. , Choi, J. , Park, H. , Ha, J. , Kim, Y. , Rogers, J. A. , and Paik, U. , 2012, “ Patterned Oxide Semiconductor by Electrohydrodynamic Jet Printing for Transparent Thin Film Transistors,” Appl. Phys. Lett., 100(10), p. 102108. [CrossRef]
Park, H.-G. , Byun, S.-U. , Jeong, H.-C. , Lee, J.-W. , and Seo, D.-S. , 2013, “ Photoreactive Spacer Prepared Using Electrohydrodynamic Printing for Application in a Liquid Crystal Device,” ECS Solid State Lett., 2(12), pp. R52–R54. [CrossRef]
Ahn, B. Y. , Duoss, E. B. , Motala, M. J. , Guo, X. , Park, S.-I. , Xiong, Y. , Yoon, J. , Nuzzo, R. G. , Rogers, J. A. , and Lewis, J. A. , 2009, “ Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes,” Science, 323(5921), pp. 1590–1593. [CrossRef] [PubMed]
Jang, Y. , Kim, J. , and Byun, D. , 2013, “ Invisible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing,” J. Phys. D: Appl. Phys., 46(15), p. 155103. [CrossRef]
Teguh Yudistira, H. , Pradhipta Tenggara, A. , Dat Nguyen, V. , Teun Kim, T. , Dian Prasetyo, F. , Choi, C.-G. , Choi, M. , and Byun, D. , 2013, “ Fabrication of Terahertz Metamaterial With High Refractive Index Using High-Resolution Electrohydrodynamic Jet Printing,” Appl. Phys. Lett., 103(21), p. 211106. [CrossRef]
Kress, S. J. , Richner, P. , Jayanti, S. V. , Galliker, P. , Kim, D. K. , Poulikakos, D. , and Norris, D. J. , 2014, “ Near-Field Light Design With Colloidal Quantum Dots for Photonics and Plasmonics,” Nano Lett., 14(10), pp. 5827–5833. [CrossRef] [PubMed]
Sutanto, E. , Tan, Y. , Onses, M. S. , Cunningham, B. T. , and Alleyne, A. , 2014, “ Electrohydrodynamic Jet Printing of Micro-Optical Devices,” Manuf. Lett., 2(1), pp. 4–7. [CrossRef]
Vespini, V. , Coppola, S. , Todino, M. , Paturzo, M. , Bianco, V. , Grilli, S. , and Ferraro, P. , 2016, “ Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip, 16(2), pp. 326–333. [CrossRef] [PubMed]
Onses, M. S. , Ramírez-Hernández, A. , Hur, S.-M. , Sutanto, E. , Williamson, L. , Alleyne, A. G. , Nealey, P. F. , De Pablo, J. J. , and Rogers, J. A. , 2014, “ Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing,” ACS Nano, 8(7), pp. 6606–6613. [CrossRef] [PubMed]
Korkut, S. , Saville, D. A. , and Aksay, I. A. , 2008, “ Collodial Cluster Arrays by Electrohydrodynamic Printing,” Langmuir, 24(21), pp. 12196–12201. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

High-resolution EHD printing: (a) schematic illustration of an EHD printing system. A voltage is connected to the nozzle and the electrode under the substrate to eject the ink with electrostatic force. (b) A typical nozzle and substrate configuration for EHD printing. Ink ejects from the apex of the conical meniscus that forms at the tip of the nozzle owing to the action of a voltage applied between the tip and ink, and the underlying substrate. These droplets eject onto a moving substrate to produce designed patterns (Reproduced with permission from Park et al. [17]. Copyright 2007 by Nature Publishing Group). (c) Mechanism of EHD printing with typical forces acting on the fluid surface. Hydrodynamic force (Fh), which supplies fluid to the meniscus; the surface tension force (Fγ), which hangs the droplets on the capillary tip; and the electrostatic force (FE), which deforms the meniscus into the cone shape and eject droplets or jet from the cone tip. S, L, and G indicate the solid phase, liquid phase, and the gas phase, respectively (Reproduced with permission from Lee et al. [19]. Copyright 2013 by American Chemical Society).

Grahic Jump Location
Fig. 2

Typical jetting modes of EHD printing (Reproduced with permission from Jaworek and Krupa [23]. Copyright 1999 by Springer Publishing)

Grahic Jump Location
Fig. 3

(a) Phase diagram depicting flow transitions that occur as flow rate and/or electric field strength are varied and (b) jetting maps showing the dependence of jetting modes on dimensionless parameters (Reproduced with permission from Lee et al. [19]. Copyright 2013 by American Chemical Society)

Grahic Jump Location
Fig. 4

Effects of surface tension on proper jetting mode formation, for water, Ethylene glycol (EG), Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF), acetone, ethanol, and isopropyl alcohol (IPA) (Reproduced with permission from Bae et al. [54]. Copyright 2017 by Wiley Publishing)

Grahic Jump Location
Fig. 5

(a) Drop-on-demand EHD printed AgNP droplet (Reproduced with permission from Wei et al. [58]. Copyright 2014 by IOP Publishing). (b) Truncated hexagonal Au grid with a small lattice constant of 4 μm (Reproduced with permission from Schneider et al. [60]. Copyright 2016 by Wiley Publishing). (c) Optical micrographs of electroluminescence of green QD LEDs (Reproduced with permission from Kim et al. [61]. Copyright 2015 by American Chemical Society). (d) Printed PEDOT:PSS lines (Reproduced with permission from Lim et al. [62]. Copyright 2016 by The Royal Society of Chemistry). (e) Fluorescence micrograph (left) and atomic force microscope image (right) of printed DNA microarrays (Reproduced with permission from Park et al. [63]. Copyright 2008 by American Chemical Society). (f) Protein microarray formed by EHD printing (Reproduced with permission from Shigeta et al. [64]. Copyright 2012 by American Chemical Society). (g) DoD printed wax droplet (Reproduced with permission from Wei and Dong [65]. Copyright 2014 by The American Society of Mechanical Engineers. (h) EHD printed PCL scaffold (Reproduced with permission from Wei and Dong [66]. Copyright 2013 by IOP Publishing. (i) EHD directly printed 2D and 3D structures using molten metal alloys. Scale bar: 500 μm (Reproduced with permission from Han and Dong [67,68]. Copyright 2017 by Elsevier Publishing). (j) EHD printed AgNW patterns (Reproduced with permission from Cui et al. [69]. Copyright 2018 by The Royal Society of Chemistry). (k) EHD printed RGO field-effect transistors (Reproduced with permission from An et al. [70]. Copyright 2015 by Wiley Publishing).

Grahic Jump Location
Fig. 6

(a) Design concept of the double-layer field shaping printhead e-jet setup with corresponding electric field shaping, and printed patterns (Reproduced with permission from Tse and Barton [106]. Copyright 2014 by American Institute of Physics). (b) Schematic of ring extractor design, and ((c)–(e)) the printed 3D microstructures (Reproduced with permission from Han and Dong [107]. Copyright 2017 by IOP Publishing). (f) Principle scheme of the multinozzle multilevel voltage method, and (g) printed droplets show good dimension consistency and position consistency (Reproduced with permission from Pan et al. [108].Copyright 2015 by American Institute of Physics).

Grahic Jump Location
Fig. 7

(a) Image of a flower pattern formed with EHD printed dots (∼8 μm diameters) of single-wall carbon nanotubes from an aqueous solution (Reproduced with permission from Park et al. [17]. Copyright 2007 by Nature Publishing Group). (b) High-speed camera image of EHD DoD printing of silver nanocolloid using pulsed voltage (Reproduced with permission from Park et al. [116]. Copyright 2014 by Springer Publishing). (c) Time-lapse image of EHD DoD of methanol solution with a constant DC voltage (Reproduced with permission from Marginean et al. [45]. Copyright 2004 by The American Chemical Society).

Grahic Jump Location
Fig. 8

(a) Schematic voltage profile for the pulsed EHD printing and the resulting jetting behavior (Reproduced with permission from Choi et al. [103]. Copyright 2008 by American Institute of Physics). (b) Schematic plot of alternating current (AC)-pulse modulated EHD-jet printing process. Residue charge of printed droplets is neutralized on insulating substrates, and (c) DoD printed droplets with ejection frequency and droplet size controlled by parameter of the AC-pulse voltage (Reproduced with permission from Wei et al. [58]. Copyright 2014 by IOP Publishing).

Grahic Jump Location
Fig. 9

(a) Stable cone-jet on the EHD printing of melted PCL. (b) EHD printed circular coil pattern (Reproduced with permission from Wei and Dong [66]. Copyright 2013 by IOP Publishing). (c) The deposition behavior of PEO solution jet with different standoff distance. ((d)–(f)) Plotted PEO microfibers at different standoff distance (Reproduced with permission from Zheng et al. [128]. Copyright 2016 by Springer Publishing).

Grahic Jump Location
Fig. 10

(a) Scaling law shows the relationship between pulsation frequency and the scaled electric field. The slop of the data in this log–log plot is approximately ∼1.5. (b) Images captured using a high-speed camera for these experiments to validate the scaling law. The time separation between adjacent images is 100 μs (Reproduced with permission from Choi et al. [46]. Copyright 2008 by American Institute of Physics).

Grahic Jump Location
Fig. 11

(a) Schematic configuration for FEA modeling of the electrostatic force on the droplet and the electrical field distribution around the nozzle tip during the droplet ejection (Reproduced with permission from Wei and Dong [65]. Copyright 2014 by The American Society of Mechanical Engineers). (b) The change of the tip-streaming from an uncharged, slightly conducting liquid drop subject to a uniform external electric field (Reproduced with permission from Collins et al. [141]. Copyright 2013 by National Academy of Science).

Grahic Jump Location
Fig. 12

(a) Electrohydrodynamic 3D printing using a phase change material (wax) as the ink (Reproduced with permission from Han et al [109]. Copyright 2014 by Elsevier Publishing). (b) Direct printing of silver pillars by auto-focusing EHD printing (Reproduced with permission from Galliker et al. [117]. Copyright 2012 by Nature Publishing Group). (c) Schematic and scanning electron microscope (SEM) images of 3D wall structures made of anthracene and TIPS-pentacene (Reproduced with permission from An et al. [156]. Copyright 2015 by Wiley Publishing).

Grahic Jump Location
Fig. 13

(a) Electrohydrodynamic printed densely packed D15 on a narrow rectangle of patterned fibronectin and the printed spot which is small enough to constrain single cells. Scale bar: 50 μm (Reproduced with permission from Poellmann et al. [168]. Copyright 2011 by Wiley Publishing). (b) EHD printed spiral rectangular shape of the bacterial colony pattern. (c) bacterial pattern of the eagle. Scale bar: 2 mm (Reproduced with permission from Kim et al. [163]. Copyright 2009 by Springer Publishing). (d) Confocal images of primary rat hippocampal cells distributed within scaffold, primary monoclonal antibody for actin is used to label the processes (green), while TO-PRO®-3 was used to label nuclei (red) (Reproduced with permission from Hanson Shepherd et al. [169]. Copyright 2011 by Wiley Publishing).

Grahic Jump Location
Fig. 14

(a) Transparent thin film transistors with EHD printed semiconductors. Scale bar: 300 μm (Reproduced with permission from Lee et al. [190]. Copyright 2012 by American Institute of Physics). (b) Printed AgNW heaters and time response of the AgNW heater (scale bar, 5 mm) (Reproduced with permission from Cui et al. [69]. Copyright 2018 by the Royal Society of Chemistry). (c) EHD printed conductor on PDMS, A stable electrical response was achieved during bending test. (d) EHD printed 20 × 20 matrix of touch sensors over a 10 × 10 mm area, the touch signal from each individual sensor was detected by the change in the capacitance (Reproduced with permission from Han and Dong [68]. Copyright 2018 by Wiley Publishing). (e) EHD printed RGO with different thickness. Scale bar: 200 μm. (f) High-resolution printing of (RGO) on nonplanar surfaces. Scale bar: 50 μm. (g) SEM images of the RGO patterns printed on the sidewall of a glass microcapillary as the substrate. Scale bars: 100 μm (Reproduced with permission from An et al. [70]. Copyright 2015 by Wiley Publishing).

Grahic Jump Location
Fig. 15

(a) Cross-sectional view of polymer microlens on a surface after treatment using Fluorolink S10 providing a hydrophobic condition. (b) Representative image of a thin fluorinated layer onto a microfluidic chip with printed and cured lenses formed with different diameters of 150–1500 μm. (c) Optical microscope images of the polymer microlens on the microfluidic chip. (d) The polymeric microlens was positioned over the United States Air Force target and observed under an optical microscope. (e1e4) Microlenses were directly deposited on-board chip (Reproduced with permission from Vespini et al. [197]. Copyright 2016 by The Royal Society of Chemistry).

Grahic Jump Location
Fig. 16

Electrohydrodynamic jet printing of block copolymers films: (a) SEM images of a complex pattern printed with two PS-b-PMMAs with different molecular weights. The left and right images present high-magnification views. (b) Individual dots (left) and lines (right) printed with 37–37 K (top) and 25–26 K (bottom) PS-b-PMMA (0.1% ink and a nozzle with 500 nm internal diameter). (c) SEM image showing self-assembled nanoscale structures with two different morphologies (lamellae forming 37–37 K, left; cylinder forming 46–21 K, right) printed as lines (Reproduced with permission from Onses et al. [90]. Copyright 2013 by Nature Publishing Group).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In