Research Papers

Quantitative Measurement of Functional Groups on Nanocarbon Allotropes Surface by Boehm Titration

[+] Author and Article Information
M. Hernández-Ortiz, I. Ortiz-Medina

Unidad Académica de Economía,
Universidad Autónoma de Zacatecas (UAZ),
Avenida Preparatoria S/N Col. Hidráulica,
Zacatecas C. P. 98068, Zac. México

J. D. Lozano-López, S. M. Durón, M. Galván-Valencia

Unidad Académica de Ciencias Químicas,
Campus Siglo XXI, UAZ,
Km 6 Carretera Zacatecas-Guadalajara Ejido la
Zacatecas C. P. 98160, Zac. México

Y. Estevez-Martínez

Departamento de Ingeniería Electrónica,
Instituto Tecnológico Superior de Acatlán de Osorio,
Carretera Acatlán-San Juan Ixcaquixtla km 5.5,
Acatlán de Osorio, Puebla C. P. 74949, México

H. A. Durán-Muñoz, J. Carrera-Escobedo, O. Guirette-Barbosa

Carrera de Ingeniería Industrial,
Universidad Politécnica de Zacatecas (UPZ),
Plan de Pardillo Sn, Parque Industrial,
Fresnillo 99059, Zac. México

L. A. Ramírez-Hernández

Unidad Académica de Matemáticas,
Czda. Solidaridad y Paseo La Bufa S/N,
Zacatecas C. P. 98060, Zac. México

V. M. Castaño-Meneses

Departamento de Ingeniería Molecular de Materiales
del Centro de Física Aplicada y Tecnología Avanzada
Campus Juriquilla,
Universidad Nacional Autónoma de México,
Boulevard Juriquilla No. 3001,
Querétaro C. P. 76230, México

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received July 17, 2018; final manuscript received March 29, 2019; published online May 15, 2019. Editor: Nicholas Fang.

J. Micro Nano-Manuf 7(1), 011002 (May 15, 2019) (7 pages) Paper No: JMNM-18-1023; doi: 10.1115/1.4043419 History: Received July 17, 2018; Revised March 29, 2019

Various nanocarbons (NCs) were used to study their surface groups under standardized Bohem titration, including: multiwalled carbon nanotube (CNT), graphene (G), Vulcan carbon (VC), and nanodiamond (ND). Endpoint-measured titration using second derivative method to quantify carboxylic, lactonic, and phenolic groups created on treated carbon surfaces shows a high precision comparable to other recent reports and with errors of 1 order of magnitude lower. The results exhibit major concentration of carboxyl group increased after the NCs were oxidized compared to the amount of other functional groups like phenols and lactonic groups. It is important highlight, the concentration ratio of carboxyl group with VC:VC-O was showed at 1:77, exhibited a major result regarding other NCs which exhibited ratios of 1:4.5, 1:1.4, and 1:2.5 for ND:ND-O, CNT:CNT-O, and G:G-O, respectively. It is concluded that VC is a NC that competes and excels in its capacity of oxidation with respect to the popular NCs as CNT, graphene (G), and ND.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Kalijadis, A. M. , Vukčević, M. M. , Jovanović, Z. M. , Laušević, Z. V. , and Laušević, M. D. , 2011, “ Characterization of Surface Oxygen Groups on Different Carbon Materials by the Boehm Method and Temperature Programmed Desorption,” J. Serb. Chem. Soc., 76(5), pp. 757–768. [CrossRef]
Bai, Y. , Zhao, X. , Li, T. , Lv, Z. , Lv, S. , Han, H. , Yin, Y. , and Wang, H. ,. 2014, “ First-Principles Investigation in the Raman and Infrared Spectra of sp 3 Carbon Allotropes,” Carbon, 78, pp. 70–78. [CrossRef]
Qiao, Z. , Li, J. , Zhao, N. , Shi, C. , and Nash, P. , 2006, “ Structural Evolution and Raman Study of Nanocarbons From Diamond Nanoparticles,” Chem. Phys. Lett., 429(4–6), pp. 479–482. [CrossRef]
Scheibe, B. , Borowiak-Palen, E. , and Kalenczuk, R. J. , 2010, “ Oxidation and Reduction of Multiwalled Carbon Nanotubes—Preparation and Characterization,” Mater. Charact., 61(2), pp. 185–191. [CrossRef]
Xia, H. , Zhang, Y. , Chen, C. , Wu, W. , Yao, K. , and Zhang, J. , 2016, “ Ozone-Mediated Functionalization of Multi-Walled Carbon Nanotubes and Their Activities for Oxygen Reduction Reaction,” J. Mater. Sci. Technol., 32(6), pp. 533–538. [CrossRef]
Kim, Y. S. , and Park, C. R. , 2016, “ One-Pot Titration Methodology for the Characterization of Surface Acidic Groups on Functionalized Carbon Nanotubes,” Carbon, 96, pp. 729–741. [CrossRef]
Schmidlin, L. , Pichot, V. , Comet, M. , Josset, S. , Rabu, P. , and Spitzer, D. , 2012, “ Identification, Quantification and Modification of Detonation Nanodiamond Functional Groups,” Diam. Relat. Mater., 22, pp. 113–117. [CrossRef]
Yan, Q.-L. , Gozin, M. , Zhao, F.-Q. , Cohen, A. , and Pang, S.-P. , 2016, “ Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials,” Nanoscale, 8(9), pp. 4799–4851. [CrossRef] [PubMed]
Zappielo, C. D. , Nanicuacua, D. M. , dos Santos, W. N. L. , da Silva, D. L. F. , Dall'Antônia, L. H. , de Oliveira, F. M. , Clausen, D. N. , and Tarley, C. R. T. , 2016, “ Solid Phase Extraction to On-Line Preconcentrate Trace Cadmium Using Chemically Modified Nano-Carbon Black With 3-Mercaptopropyltrimethoxysilane,” J. Braz. Chem. Soc., 27(10), pp. 1715–1726.
Zhang, Z. , Pfefferle, L. , and Haller, G. L. , 2014, “ Comparing Characterization of Functionalized Multi-Walled Carbon Nanotubes by Potentiometric Proton Titration, NEXAFS, and XPS,” Chin. J. Catal., 35(6), pp. 856–863. [CrossRef]
Wu, Z. , Hamilton, R. F. , Wang, Z. , Holian, A. , and Mitra, S. , 2014, “ Oxidation Debris in Microwave Functionalized Carbon Nanotubes: Chemical and Biological Effects,” Carbon, 68, pp. 678–686. [CrossRef]
FengChen, Z. , LingqianChang, T. , ZhengpingZhao, P. , and JintaoYang, M. , 2017, “ Synthesis and Characterization of Lignosulfonate-Derived Hierarchical Porous Graphitic Carbons for Electrochemical Performances,” Microporous Mesoporous Mater., 247, pp. 184–189. [CrossRef]
Boehm, H.-P. , Diehl, E. , Heck, W. , and Sappok, R. , 1964, “ Surface Oxides of Carbon,” Angew. Chem. Int. Ed. Engl., 3(10), pp. 669–677. [CrossRef]
Boehm, H. P. , 2002, “ Surface Oxides on Carbon and Their Analysis: A Critical Assessment,” Carbon, 40(2), pp. 145–149. [CrossRef]
Oickle, A. M. , Goertzen, S. L. , Hopper, K. R. , Abdalla, Y. O. , and Andreas, H. A. , 2010, “ Standardization of the Boehm Titration—Part II: Method of Agitation, Effect of Filtering and Dilute Titrant,” Carbon, 48(12), pp. 3313–3322. [CrossRef]
Doroodmand, M. M. , and Shafie, Z. , 2014, “ Solid-Based Titrimetry as a Straightforward Method for Simultaneous Detection of Hydroxyl and Carboxylic Functional Groups During Evaluation of the Acidity of Nanocarbons,” Sens. Actuators A, 207, pp. 32–38. [CrossRef]
Hernandez-Ortiz, M. , Estevez-Martínez, Y. , Durón, S. M. , Escalante-García, I. L. , Vega-González, M. , and Castaño, V. M. , 2016, “ Morphology and Surface Structure of Nanocarbon Allotropes: A Comparative Study,” Fullerenes Nanotubes Carbon Nanostruct., 24(5), pp. 345–352. [CrossRef]
Amieva, E. J.-C. , Fuentes-Ramírez, R. , Martínez-Hernandez, A. L. , Millan-Chiu, B. , Lopez-Marin, L. M. , Castaño, V. M. , and Velasco-Santos, C. , 2014, “ Graphene Oxide and Reduced Graphene Oxide Modification With Polypeptide Chains From Chicken Feather Keratin,” J. Alloys Compd., 643(Suppl. 1), pp. S137–S143.
Goertzen, S. L. , Thériault, K. D. , Oickle, A. M. , Tarasuk, A. C. , and Andreas, H. A. , 2010, “ Standardization of the Boehm Titration—Part I: CO2 Expulsion and Endpoint Determination,” Carbon, 48(4), pp. 1252–1261. [CrossRef]
Checchetti, A. , and Lanzo, J. , 2015, “ Qualitative Measurement of pH and Mathematical Methods for the Determination of the Equivalence Point in Volumetric Analysis,” World J. Chem. Educ., 3(3), pp. 64–69. [CrossRef]
Kim, Y. S. , Yang, S. J. , Lim, H. J. , Kim, T. , and Park, C. R. , 2012, “ A Simple Method for Determining the Neutralization Point in Boehm Titration Regardless of the CO2 Effect,” Carbon, 50(9), pp. 3315–3323. [CrossRef]
Hanelt, S. , Orts-Gil, G. , Friedrich, J. F. , and Meyer-Plath, A. , 2011, “ Differentiation and Quantification of Surface Acidities on MWCNTs by Indirect Potentiometric Titration,” Carbon, 49(9), pp. 2978–2988. [CrossRef]
Zellmer, D. L. , 1997, “ The Derivative End Point Methods,” California State University, Fresno, CA, accessed Apr. 12, 2019, http://zimmer.csufresno.edu/~davidz/Chem102/Derivative/Derivative.html
González-Guerrero, A. B. , Mendoza, E. , Pellicer, E. , Alsina, F. , Fernández-Sánchez, C. , and Lechuga, L. M. , 2008, “ Discriminating the Carboxylic Groups From the Total Acidic Sites in Oxidized Multi-Wall Carbon Nanotubes by Means of Acid–Base Titration,” Chem. Phys. Lett., 462(4–6), pp. 256–259. [CrossRef]
Kim, Y. S. , Yang, S. J. , Lim, H. J. , Kim, T. , Lee, K. , and Park, C. R. , 2012, “ Effects of Carbon Dioxide and Acidic Carbon Compounds on the Analysis of Boehm Titration Curves,” Carbon, 50(4), pp. 1510–1516. [CrossRef]
Chen, J. P. , and Wu, S. , 2004, “ Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties,” Langmuir, 20(6), pp. 2233–2242. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Titration curve (left vertical axis) and its second derivative (right vertical axis) after reaction base NaHCO3 with of VC-O and (b) the magnified view around where second derivative vanishes (Δ2pH/ΔV2=0)

Grahic Jump Location
Fig. 2

(a) Titration curves of the blank (continuous line), 0.05 M NaHCO3, and the filtered solution from (i) G and G-O, (ii) CNT and CNT-O, (iii) VC and VC-O, and (iv) ND and ND-O, respectively; and (b) curve of their second-order derivatives

Grahic Jump Location
Fig. 3

(a) Titration curves of (i) G and G-O, (ii) CNT and CNT-O, (iii) VC and VC-O, (iv) ND and ND-O and ((i)–(iv)) blank, 0.05 M Na2CO3, respectively and (b) their second-order derivatives

Grahic Jump Location
Fig. 4

(a) Titration curves and (b) second derivatives of the reaction base 0.05 M NaOH from (i) G and G-O, (ii) CNT and CNT-O, (iii) VC and VC-O, (iv) ND and ND-O and ((i)–(iv)) prereaction base (blank)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In