Research Papers

Aerosol Jet® Direct-Write for Microscale Additive Manufacturing

[+] Author and Article Information
James Q. Feng

Optomec, Inc.,
2575 University Ave. W. #135,
St. Paul, MN 55114
e-mail: jfeng@optomec.com

Michael J. Renn

Optomec, Inc.,
2575 University Ave. W. #135,
St. Paul, MN 55114
e-mail: mrenn@optomec.com

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received January 29, 2019; final manuscript received April 12, 2019; published online May 15, 2019. Editor: Nicholas Fang.

J. Micro Nano-Manuf 7(1), 011004 (May 15, 2019) (7 pages) Paper No: JMNM-19-1004; doi: 10.1115/1.4043595 History: Received January 29, 2019; Revised April 12, 2019

The unique capabilities of Aerosol Jet® technology for noncontact material deposition with in-flight adjustment of ink rheology in microdroplets are explained based on first principles of physics. The suitable range of ink droplet size is determined from the effectiveness for inertial impaction when depositing onto substrate and convenience for pneumatic manipulation, in-flight solvent evaporation, etc. The existence of a jet Reynolds number window is shown by a fluid dynamics analysis of impinging jets for Aerosol Jet® printing with long standoff between nozzle and substrate, which defines the operation range of gas flow rate according to the nozzle orifice diameter. The time scale for ink droplets to remove volatile solvent is shown to just coincide that for them to travel in the nozzle channel toward substrate after meeting the coflowing sheath gas, enabling the in-flight manipulation of ink properties for high aspect-ratio feature printing. With inks being able to solidify rapidly, 3D structures, such as tall micropillars and thin-wall boxes, can be fabricated with Aerosol Jet® printing. Having mist droplets in the range of 1–5 μm also makes it possible to print lines of width about 10 μm.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Renn, M. J. , Marquez, G. H. , King, B. H. , Essien, M. , and Miller, W. D. , 2002, “ Flow- and Laser-Guided Direct Write of Electronic and Biological Components,” Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources, A. Pique and D. B. Chrisey , eds., Academic Press, San Diego, CA, pp. 475–492.
Renn, M. J. , 2006 and 2007, “ Direct WriteTM System,” U.S. Patent Nos. 7,108,894 and 7,270,844.
Renn, M. J. , King, B. H. , Essien, M. , and Hunter, L. J. , 2006, “ Apparatuses and Method for Maskless Mesoscale Material Deposition,” U.S. Patent No. 7,045,015.
Zollmer, V. , Muller, M. , Renn, M. , Busse, M. , Wirth, I. , Codlinski, D. , and Kardos, M. , 2006, “ Printing With Aerosol: A Maskless Deposition Technique Allows High Definition Printing of a Variety of Functional Materials,” Eur. Coat. J., 7–8, pp. 46–55.
Hedges, M. , Kardos, M. , King, B. , and Renn, M. , 2006, “ Aerosol-Jet Printing for 3-D Interconnects, Flexible Substrates and Embedded Passives,” Third Annual International Wafer Level Packaging Conference (IWLPC 2006), San Jose, CA, Nov. 1–3, pp. 179–183.
Kahn, B. E. , 2007, “ The M3D Aerosol Jet System, an Alternative to Inkjet Printing for Printed Electronics,” Org. Printed Electron., 1, pp. 14–17.
Cho, J. H. , Lee, J. , Xia, Y. , Kim, B. S. , He, Y. , Renn, M. J. , Lodge, T. P. , and Frisbie, C. D. , 2008, “ Printable Ion-Gel Gate Dielectrics for Low-Voltage Polymer Thin-Film Transistors on Plastic,” Nat. Mater., 7(11), pp. 900–906. [CrossRef] [PubMed]
King, B. , and Renn, M. , 2009, “ Aerosol Jet® Direct Write Printing for Mil-Aero Electronic Applications,” Lockheed Martin Palo Alto Colloquia, Palo Alto, CA, Accessed May 2, 2019, http://www.optomec.com/wp-content/uploads/2014/04/Optomec_Aerosol_Jet_Direct_Write_Printing_for_Mil_Aero_Electronic_Apps.pdf
Jones, C. S. , Lu, X. , Renn, M. , Stroder, M. , and Shih, W.-S. , 2010, “ Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution,” Microelectron. Eng., 87(3), pp. 434–437. [CrossRef]
Christenson, K. K. , Paulsen, J. A. , Renn, M. J. , McDonald, K. , and Bourassa, J. , 2011, “ Direct Printing of Circuit Boards Using Aerosol Jet®,” NIP 27 Digital Fabrications, Minneapolis, MN, Oct. 2–6, pp. 433–436.
Hoeber, J. , Goth, C. , Franke, J. , and Hedges, M. , 2011, “ Electrical Functionalization of Thermoplastic Materials by Aerosol Jet Printing,” IEEE 13th Electronics Packaging Technology Conference, Singapore, Dec. 7–9.
Paulsen, J. A. , Renn, M. J. , Christenson, K. K. , and Plourde, R. , 2012, “ Printing Conformal Electronics on 3D Structures With Aerosol Jet® Technology,” Future of Instrumentation International Workshop (FIIW), Gatlinburg, TN, Oct. 8–9.
Zhao, D. , Liu, T. , Park, J. G. , Zhang, M. , Chen, J.-M. , and Wang, B. , 2012, “ Conductivity Enhancement of Aerosol-Jet-Printed Electronics by Using Silver Nanoparticles Ink With Carbon Nanobubes,” Microelectron. Eng., 96, pp. 71–75. [CrossRef]
Ha, M. , Zhang, W. , Braga, D. , Renn, M. J. , Kim, C. H. , and Frisbie, C. D. , 2013, “ Aerosol-Jet-Printed, 1 Volt H-Bride Drive Circuit on Plastic With Integrated Elecrochromic Pixel,” ACS Appl. Mater. Interfaces, 5(24), pp. 13198–13206. [CrossRef] [PubMed]
Tait, J. G. , Witkowska, E. , Hirade, M. , Ke, T.-H. , Malinowski, P. E. , Steudel, S. , Adachi, C. , and Heremans, P. , 2015, “ Uniform Aerosol Jet Printed Polymer Lines With 30 μm Width for 140 Ppi Resolution RGB Organic Light Emitting Diodes,” Org. Electron., 22, pp. 40–43. [CrossRef]
Cai, F. , Pavlidis, S. , Papapolymerou, J. , Chang, Y. H. , Wang, K. , Zhang, C. , and Wang, B. , 2014, “ Aerosol Jet Printing for 3-D Multilayer Passive Microwave Circuitry,” 44th European Microwave Conference, Rome, Italy, Oct. 6–9.
Rahman, T. , Renaud, L. , Heo, D. , Renn, M. , and Panat, R. , 2015, “ Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures,” J. Micromech. Microeng., 25(10), p. 107002. [CrossRef]
Wang, K. , Chang, Y.-H. , Zhang, C. , and Wang, B. , 2016, “ Conductive-on-Demand: Tailorable Polyimide/Carbon Nanotube Nanocomposite Thin Film by Dual-Material Aerosol Jet Printing,” Carbon, 98, pp. 397–403. [CrossRef]
Cantu, E. , Tonello, S. , Abate, G. , Uberti, D. , Sardini, E. , and Serpelloni, M. , 2018, “ Aerosol Jet Printed 3D Electrochemical Sensors for Protain Detection,” Sensors, 18(11), p. 3179. [CrossRef]
Kangas, S. , Feng, J. , Chen, Y.-L. , and Zeng, M. , 2015, “ Medical Device With Crystalline Drug Coating,” U.S. Patent No. 9,056,152.
Weber, J. , and Feng, J. Q. , 2015, “ Protective Surfaces for Drug-Coated Medical Devices,” U.S. Patent No. 9,061,127.
Akhatov, I. S. , Hoey, J. M. , Swenson, O. F. , and Schulz, D. L. , 2008, “ Aerosol Focusing in Micro-Capillaries: Theory and Experiment,” J. Aerosol Sci., 39(8), pp. 691–709. [CrossRef]
Binder, S. , Glatthaar, M. , and Rädlein, E. , 2014, “ Analytical Investigation of Aerosol Jet Printing,” Aerosol Sci. Technol., 48(9), pp. 924–929. [CrossRef]
Feng, J. Q. , 2015, “ Sessile Drop Deformation Under an Impinging Jet,” Theor. Comput. Fluid Dyn., 29(4), pp. 277–290. [CrossRef]
Feng, J. Q. , 2015, “ Vapor Transport of a Volatile Solvent for a Multicomponent Aerosol Droplet,” Aerosol Sci. Technol., 49(9), pp. 757–766. [CrossRef]
Feng, J. Q. , 2017, “ A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface,” J. Appl. Fluid Mech., 10(1), pp. 243–256. [CrossRef]
Feng, J. Q. , 2017, “ A Computational Study of Particle Deposition Patterns From a Circular Laminar Jet,” J. Appl. Fluid Mech., 10(4), pp. 1001–1012. [CrossRef]
Feng, J. Q. , 2017, “ Multiphase Flow Analysis of Mist Transport Behavior in Aerosol Jet® System,” Int. J. Comput. Methods Exp. Meas., 6(1), pp. 23–34.
Secor, E. B. , 2018, “ Principles of Aerosol Jet Printing,” Flexible Printed Electron., 3(3), p. 035002. [CrossRef]
Chen, G. , Gu, Y. , Tsang, H. , Hines, D. R. , and Das, S. , 2018, “ The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing,” Adv. Eng. Mater., 20(8), p. 1701084. [CrossRef]
Feng, J. Q. , 2019, “ Mist Flow Visualization for Round Jets in Aerosol Jet® Printing,” Aerosol Sci. Technol., 53(1), pp. 45–52. [CrossRef]
Mahajan, A. , Frisbie, C. D. , and Francis, L. F. , 2013, “ Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect-Ratio Silver Lines,” ACS Appl. Mater. Interfaces, 5(11), pp. 4856–4864. [CrossRef] [PubMed]
Salary, R. , Lombardi, J. P. , Tootooni, M. S. , Donovan, R. , Rao, P. K. , Borgesen, P. , and Poliks, M. D. , 2016, “ Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process,” ASME J. Manuf. Sci. Eng., 139(2), p. 021015. [CrossRef]
Salary, R. , Lombardi, J. P. , Weerawame, D. L. , Tootooni, M. S. , Rao, P. K. , and Poliks, M. D. , 2018, “ In Situ Functional Monitoring of Aerosol Jet-Printed Electronic Devices Using a Combined Sparse Representation-Based Classification (SRC) Approach,” ASME Paper No. MSEC2018-6586.
Gu, Y. , Gutierrez, D. , Das, S. , and Hines, D. R. , 2017, “ Inkwells for on-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing,” J. Micromech. Microeng., 27(9), p. 097001. [CrossRef]
Fuchs, N. A. , 1964, The Mechanics of Aerosols, Pergamon Press, New York.
Friedlander, S. K. , 1977, Smoke, Dust and Haze, Fundamentals of Aerosol Behavior, Wiley, New York.
Pui, D. Y. H. , Romay-Novas, F. , and Liu, B. Y. H. , 1987, “ Experimental Study of Particle Deposition in Bends of Circular Cross Section,” Aerosol Sci. Technol., 7(3), pp. 301–315. [CrossRef]
Donnelly, T. D. , Hogan, J. , Mugler, A. , Schubmehl, M. , Schommer, N. , Bernoff, A. J. , Dasnurkar, S. , and Ditmire, T. , 2005, “ Using Ultrasonic Atomization to Produce an Aerosol of Micron-Scale Particles,” Rev. Sci. Instrum., 76(11), p. 113301. [CrossRef]
Optomec, 2019, “ Aerosol Jet Technology,” Optomec, Inc., Albuquerque, NM, Accessed Apr. 12, 2019, https://www.optomec.com/printed-electronics/aerosol-jet-technology/
May, K. R. , 1973, “ The Collison Nebulizer: Description, Performance and Application,” J. Aerosol Sci., 4(3), pp. 235–243. [CrossRef]
Feng, J. Q. , 2018, “ A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer,” Fifth International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'18), Niagara Falls, ON, Canada, June 7–9, Paper No. 180.
Marple, V. A. , and Chien, C. M. , 1980, “ Virtual Impactors: A Theoretical Study,” Environ. Sci. Technol., 14(8), pp. 976–985. [CrossRef] [PubMed]
Loo, B. W. , and Cork, C. P. , 1988, “ Development of High Efficiency Virtual Impactors,” Aerosol Sci. Technol., 9(3), pp. 167–176. [CrossRef]
Secor, E. B. , 2018, “ Guided Ink and Process Design for Aerosol Jet Printing Based on Annular Drying Effects,” Flexible Printed Electron., 3(3), p. 035007. [CrossRef]
Saleh, M. S. , Hu, C. , and Panat, R. , 2017, “ Three-Dimensional Microarchitected Materials and Devices Using Nanoparticle Assembly by Pointwise Spatial Printing,” Sci. Adv., 3(3), p. e1601986. [CrossRef] [PubMed]
Renn, M. J. , Schrandt, M. , Renn, J. , and Feng, J. Q. , 2017, “ Localized Laser Sintering of Metal Nanoparticle Inks Printed With Aerosol Jet® Technology for Flexible Electronics,” J. Microelectron. Electron. Packaging, 14(4), pp. 132–139. [CrossRef]


Grahic Jump Location
Fig. 1

Schematics of the Aerosol Jet® material deposition system, consisting of an atomizer that generates mist of microdroplets of a functional ink, and a mist transport-conditioning channel that delivers the mist of ink microdroplets to the deposition head, where a high-speed collimated mist jet is formed by an aerodynamic focusing nozzle with sheath gas

Grahic Jump Location
Fig. 2

Droplet size distributions in Aerosol Jet® printing, obtained by cascade impactor measurements (dark diamond), as well as data converted from the histogram shown by Binder et al. [23] (light triangle), and a Rosin–Rammler curve (dotted line): y = (n/d) [(xd0)/d]n−1exp{-[(xd0)/d]n}/(1 – exp{−[(d1d0)/d]n}) with n =2.4, d =2.7, d0 = 0.3, and d1 = 15

Grahic Jump Location
Fig. 3

Deposition radius versus sheath-to-mist ratio Y for particles of ρp = 2 g/cc and various diameters d (i.e., dp with subscript “p” omitted) in units of micron, with standoff S =3 and 5 mm for a deposition nozzle of D =0.15 mm with Q =60 sccm through a converging channel of 1.59 deg taper half angle

Grahic Jump Location
Fig. 4

Schematic of a typical configuration of the Collison Nebulizer

Grahic Jump Location
Fig. 5

Schematic of a typical ultrasonic atomizer in the Aerosol Jet® system

Grahic Jump Location
Fig. 6

Aerosol Jet® printed 60 μm diameter pillars (using a nozzle of D =200 μm) and a 1 mm × 1 mm thin wall box of 0.25 mm tall and 30 μm wall thickness (using a nozzle of D =150 μm) by in situ solidification with a UV-curable material (Loctite 3104) at room temperature

Grahic Jump Location
Fig. 7

Fine conductive lines of width ∼10 μm spaced 30 μm apart printed with an Aerosol Jet® deposition nozzle of orifice diameter D =100 μm on glass at room temperature using a silver nanoparticle ink from Advanced Nano Products (Sejong, South Korea) with ethanol as the volatile solvent



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In