Newest Issue

Research Papers

J. Micro Nano-Manuf. 2018;6(3):031001-031001-6. doi:10.1115/1.4039508.

Electrical conductivity of the dielectric liquid has been shown to play main role in discharge initiation and electrical breakdown as revealed by several modeling and experimental studies on electrical discharges in liquids. However, there has been lack of systematic efforts to evaluate how dielectric conductivity affects the micro-electrical discharge machining (micro-EDM) process, in particular. Experimental investigation has been carried out to understand the effect of dielectric conductivity on micro-EDM plasma characteristics using optical emission spectroscopy. Plasma temperature and electron density estimations have been obtained at five levels of electrical conductivity of water. It is found that while the plasma temperature shows a marginal decrease, electron density of the plasma increases with an increase in the conductivity. At increased electron density, a higher heat flux at anode can be expected resulting in increased material erosion.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031002-031002-6. doi:10.1115/1.4039794.

Electrospinning, one of the most effective ways of producing nanofibers, has been applied in as many fields throughout its long history. Starting with far-field electrospinning (FFES) and advancing to the near-field, the application area has continued to expand, but lack of understanding of the exact jet speed and fiber deposition rate is a major obstacle to entry into precision micro- to nano-scale manufacturing. In this paper, we, for the first time, analyze and predict the jet velocity and deposition rate in near-field electrospinning (NFES) through novel image analysis process. Especially, analog image is converted into a digital image, and then, the area occupied by the deposited fiber is converted into a velocity, through which the accuracy of the proposed method is proved to be comparable to direct jet speed measurement. Finally, we verified the proposed method can be applied to various process conditions without performing delicate experiments. This research not only will broaden the understanding of jet speed and fiber deposition rate in NFES but also will be applicable to various areas including patterning of the sensor, a uniform arrangement of nanofibers, energy harvester, reinforcing of composite, and reproducing of artificial tissue.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031003-031003-11. doi:10.1115/1.4040450.

Electrohydrodynamic (EHD) processes were used for direct writing of bead arrays with controllable bead sizes. Experiments were conducted to align layers of bead-on-string structures in an effort to create three-dimensional patterns. The results show that the jet focuses on previously deposited droplets allowing for the selective deposition of material over already deposited patterns. Jet attraction to already deposited solutions on the substrate is attributed to the charge transport at the liquid ink–metal collector interface and the dielectric properties of the water/poly(ethylene oxide) (PEO) solution under an electric field. The deposition process consists of three steps: (1) deposition of a layer of bead-on-string structures, (2) addition of extra volume to the beads by subsequent passes of the jet, and (3) evaporation of the solvent resulting in an array of beads with varying sizes. Patterns with up to 20 passes were experimentally obtained. The beads' height was seen to be independent of the number of passes. The process reported is a simple, fast, and low-cost method for deposition of bead arrays with varying diameters.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031004-031004-7. doi:10.1115/1.4040449.

Scaling up graphene fabrication is a critical step for realizing industrial applications of chemical vapor deposition (CVD) graphene, such as large-area flexible displays and solar cells. In this study, a roll-to-roll (R2R) graphene transfer system using mechanical peeling is proposed. No etching of graphene growth substrate is involved; thus, the process is economical and environmentally benign. A prototype R2R graphene transfer machine was developed. Experiments were conducted to test the effects of relevant process parameters, including linear film speed, separation angle, and the guiding roller diameter. The linear film speed was found to have the highest impact on the transferred graphene coverage, followed by the roller diameter, while the effect of separation angle was statistically insignificant. Furthermore, there was an interaction effect between the film speed and roller diameter, which can be attributed to the competing effects of tensile strain and strain rate. Overall, the experimental results showed that larger than 98% graphene coverage could be achieved with high linear film speed and large guiding roller diameter, demonstrating that a large-scale dry graphene transfer process is possible with R2R mechanical peeling.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031005-031005-11. doi:10.1115/1.4040468.

The prediction accuracy of the stability boundary in the machining process depends upon accurate estimation of cutting tool-tip dynamics. Note that the experimental modal analysis using direct impact at miniature end mill (typically 50–500 μm in diameter) is not feasible as it can result in tool failure. Consequently, alternative techniques such as experimental modal analysis using reciprocity theory and frequency-based receptance coupling substructure analysis (RCSA) have been used extensively for determining tool-tip dynamics. The experimental approach based on reciprocity theory assumes that the structure is symmetric (cross frequency response functions (FRFs) are same between two points of interest in a structure). RCSA requires a very fine frequency resolution and matrix inversion, which can lead to computational complexities. In addition, RCSA takes into account the FRFs only at the interface and free end, which can induce errors. Owing to these issues with existing approaches, this paper proposes a free-interface component mode synthesis (CMS) approach for estimation of micro-end mill dynamics. The effect of machine tool compliance including the collet–tool interface has been included for estimation of micro-end mill dynamics via a free-interface CMS approach wherein the experimental and analytical mode shapes are coupled. The predicted micro-end mill dynamics have been compared with RCSA and experimental modal analysis using reciprocity theory. Finally, the stability lobe diagrams for high-speed micromilling of Ti6Al4V has been made using the tool-tip dynamics from CMS, RCSA, and experimental technique using reciprocity theory and validated against experimental measurements for onset of instability.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031006-031006-8. doi:10.1115/1.4040469.

In this work, nanosecond laser machining is used to fabricate hydrophobic 17-4 PH stainless steel surfaces with microscale and submicron structures. Four surface structures were designed, with microscale channels and pillars (100 μm pitch size) of uniform heights (100 μm) or alternating heights (between 100 μm and 50 μm). During fabrication, the high-power laser beams also created submicron features on top of the microscale ones, leading to hierarchical, multiscale surface structures. Detailed wettability analysis was conducted on the fabricated samples. Measured static contact angles of water on these surfaces are over 130 deg without any coating, compared to ∼70 deg on the original steel surface before laser machining. Slightly lower contact angle hysteresis was also observed on the laser machined surfaces. Overall, these results agree with a simple Cassie–Baxter model for wetting that assumes only fractional surface area contact between the droplet and the surface. This work demonstrates that steel surfaces machined with relatively inexpensive nanosecond laser can achieve excellent hydrophobicity even with simple microstructural designs.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031007-031007-7. doi:10.1115/1.4040559.

In order to inspect the condition of micro milling cutter automatically and accurately in the online process, a dedicated micro milling cutter condition inspection system was established in this paper, which can effectively inspect micro cutter condition from both radial and axial direction. The key methods—the automatic dimension measurement and the fusion method for compositing all-in-focus cutting edge image of micro milling cutters—are studied. The experiments verify that the proposed methods and the developed inspection system can fulfill the needs of industrial applications.

Commentary by Dr. Valentin Fuster
J. Micro Nano-Manuf. 2018;6(3):031008-031008-6. doi:10.1115/1.4040558.

Nanoparticle reinforced metals recently emerge as a new class of materials to empower the functionality of metallic materials. There is a remarkable success in self-incorporation of nanoparticles to bulk metals for extraordinary properties. There is also a strong demand to use nanoparticles to enhance the performance of metallic microwires for exciting opportunities in numerous applications. Here, we show for the first time that silver–copper alloy (AgCu) reinforced by tungsten carbide (WC) (AgCu40 (wt %)–WC) was manufactured by a stir casting method utilizing a nanoparticle self-dispersion mechanism. The nanocomposite microwires were successfully fabricated using thermal drawing method. By introducing WC nanoparticles into bulk AgCu40 alloy, the Vickers microhardness was enhanced by 63% with 22 vol % WC nanoparticles, while the electrical conductivity dropped to 20.1% International Annealed Copper Standard (IACS). The microwires of AgCu40–10 vol % WC offered an ultimate tensile strength of 354 MPa, an enhancement of 74% from the pure alloy, and an elongation of 5.2%. The scalable manufacturing method provides a new pathway for the production of metallic nanocomposite micro/nanowires with outstanding performance for widespread applications, e.g., in biomedical, brazing, and electronics industries.

Commentary by Dr. Valentin Fuster


J. Micro Nano-Manuf. 2018;6(3):037001-037001-1. doi:10.1115/1.4039481.

The text of the paper had some inaccurate errors. The corrections are summarized below.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In