Energy management is one of the main issues in operating the HPS, which needs to be optimized with respect to the current and future change in generation, demand, and market price, particularly for HPS with strong renewable penetration. Optimal energy management strategies such as dynamic programming (DP) may become significantly suboptimal under strong uncertainty in prediction of renewable generation and utility price. In order to reduce the impact of such uncertainties, a two-scale dynamic programming scheme is proposed in this study to optimize the operational benefit based on multi-scale prediction. First, a macro-scale dynamic programming (MASDP) is performed for the long term period, based on long term ahead prediction of hourly electricity price and wind energy (speed). The battery state-of-charge (SOC) is thus obtained as the macro-scale reference trajectory. The micro-scale dynamic programming (MISDP) is then applied with a short term interval, based on short term-hour ahead auto-regressive moving average (ARMA) prediction of hourly electricity price and wind energy. The nodal SOC values from the MASDP result are used as the terminal condition for the MISDP. The simulation results show that the proposed method can significantly decrease the operation cost, as compared with the single scale DP method.

This content is only available via PDF.
You do not currently have access to this content.