Abstract
Porohyperelastic (PHE) finite element models (FEMs) have been useful in vascular biomechanics to study the coupled structural response and mobile fluid flux in arterial wall tissues for steady state and cyclic pressures. Previous papers [1,2,3] described PHE FEMs, which determined fluid transport response to representative pulsatile pressures. Those FE analyses have been extended and additional results are given here for cyclic (pulsatile) pressurization of rabbit aortas. The ABAQUS program and a PHE material model were used to simulate fluid transport for “intact” and “de-endothelialized” aortas subjected to “normal” and “hypertensive” pulsatile pressures at heart rates (HRs) of 60 and 120 BPM.
Volume Subject Area:
Cardiovascular Fluid/Solid Mechanics Interaction
This content is only available via PDF.
Copyright © 2001 by The American Society of Mechanical Engineers
You do not currently have access to this content.