Traumatic rupture of the aorta (TRA) is one of the leading causes of mortality in automobile crashes. Finite element (FE) modeling, used in conjunction with laboratory experiments, has emerged as increasingly important tool to understand the mechanisms of TRA. Appropriate material modeling of the aorta is a key aspect of such efforts. The current study focuses on obtaining biaxial mechanical properties of aorta tissue at strain rates typically experienced during automotive crashes. Five descending thoracic aorta samples from human cadavers were harvested in a cruciate shape. The samples were subjected to equibiaxial stretch at a strain rate of 44 s−1 using a new biaxial tissue-testing device. Inertially compensated loads were measured. High-speed videography was used to track ink dots marked on the center of each sample to obtain strain. The aorta tissue exhibited anisotropic and nonlinear behavior. The tissue was stiffer in the circumferential direction with a modulus of 10.64 MPa compared to 7.94 MPa in longitudinal direction. The peak stresses along the circumferential and longitudinal directions were found to be 1.89 MPa and 1.76 MPa, respectively. The tissue behavior can be used to develop a better constitutive representation of the aorta, which can be incorporated into FE models of the aorta.

1.
Sauaia
A.
,
Moore
F. A.
,
Moore
E. E.
, et al,
1995
, “
Epidemiology of trauma deaths: a reassessment
,”
J. Trauma
,
38
, pp.
185
193
.
2.
Mattox
K. L.
,
1989
, “
Fact and fiction about management of aortic transaction
,”
Ann. Thorac. Surg.
,
48
, pp.
1
2
.
3.
Mason, M. J., Shah, C. S., Maddali, M., Yang, K. H., Hardy, W. N., Van Ee, C. A., and Digges, K., 2005, “A New Device for High-Speed Biaxial Tissue Testing: Application to Traumatic Rupture of the Aorta,” 2005 SAE Transactions, Paper No. 2005-01-0741.
4.
Shah
C. S.
,
Yang
K. H.
,
Hardy
W. N.
,
Wang
H. K.
, and
King
A. I.
,
2001
, “
Development of a computer model to predict aortic rupture due to impact loading
,”
Stapp Car Crash Journal
,
45
, pp.
161
182
.
5.
Shah, C. S., Lee, J. B., Hardy, W. N., and King, K. H., 2004, “A Partially Validated Finite Element Whole-Body Human Model for Organ Level Injury Prediction,” Proc. of IMECE2004, 2004 ASME International Mechanical Engineering Congress & Exposition, Anaheim, CA, Paper No. IMECE2004-61844.
6.
Shah, C. S., Maddali, M., Mungikar, S. A., Beillas, P., Hardy, W. N., Yang, K. H., Bedewi, P. G., Digges, K., and Augenstein, J., 2005, “Analysis of a Real-World Crash Using Finite Element Modeling to Examine Traumatic Rupture of the Aorta,” 2005 SAE World Congress, Detroit, MI, Paper No. 2005-01-1293.
7.
Cavanaugh, J. M., Koh, S. W., Kaledhonkar, S. L., and Hardy, W. N., 2005, “An Analysis of Traumatic Rupture of the Aorta in Side Impact Sled Tests,” 2005 SAE World Congress, Detroit, MI, Paper No. 2005-01-0304.
8.
Silver
F. H.
,
Chistiansen
D. L.
, and
Buntin
C. M.
,
1989
, “
Mechanical properties of the aorta: A review
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
323
358
.
9.
Hallock
P.
, and
Benson
I. C
,
1937
, “
Studies on the elastic properties of human isolated aorta
,”
J. Clin. Invest.
,
16
, pp.
595
602
.
10.
Bergel
D. H.
,
1961
, “
The static elastic properties of the arterial wall
,”
J. Physiol.
,
156
, pp.
445
457
.
11.
Gow
B. S.
, and
Taylor
M. G.
,
1968
, “
Measurement of viscoelastic properties of arteries in living dogs
,”
Circ. Res.
,
23
, pp.
111
122
.
12.
Collins
R.
, and
Hu
W. C. L.
,
1972
, “
Dynamic deformation experiments on aortic tissue
,”
J. Biomech.
,
5
, pp.
333
335
.
13.
Lundevall
J.
,
1964
, “
The mechanism of traumatic rupture of the aorta
,”
Acta. Path. Mic. Sc.
,
62
, pp.
34
46
.
14.
Fung, Y. C., 1993, Biomechanics: Mechanical properties of living tissues, Springer-Verlag, New York.
15.
Viano, D. C., 1983, “Biomechanics of non-penetrating Aortic Trauma: A review,” Proc. 27th Stapp Car Crash Conference, pp. 109–114.
16.
Mohan
D.
, and
Melvin
J. W.
,
1982
, “
Failure properties of passive human aortic tissue. I - uniaxial tension tests
,”
J. Biomech.
,
15
, pp.
887
902
.
17.
Sacks
M. S.
,
2001
, “
Biaxial mechanical evaluation of planar biological materials
,”
J. Elasticity
,
61
,
199
246
.
18.
Mohan
D.
, and
Melvin
J. W.
,
1983
, “
Failure properties of passive human aortic tissue. II - biaxial tension tests
,”
J. Biomech.
,
16
, pp.
31
44
.
19.
Nielsen
P. M. F.
,
Hunter
P. J.
, and
Smaill
B. H.
,
1991
, “
Biaxial testing of membrane biomaterials: testing equipment and procedures
,”
J Biomech. Eng.
,
113
,
295
300
.
20.
Bass
C. R.
,
Darvish
K.
,
Bush
B.
,
Crandall
J. R.
,
Srinivasan
S. C. M.
,
Tribble
C.
,
Fiser
S.
,
Tourret
L.
,
Evans
J. C.
,
Patrie
J.
, and
Wang
C.
,
2001
, “
Material properties for modeling traumatic aortic rupture
,”
Stapp Car Crash Journal
,
45
, pp.
143
160
.
21.
Demer
L. L.
, and
Yin
F. C. P.
,
1983
, “
Passive biaxial mechanical properties of isolated canine myocardium
,”
J. Physiol.
,
339
, pp.
615
630
.
22.
Sacks
M. S.
, and
Chuong
C. J.
,
1993
, “
Biaxial mechanical properties of passive right ventricular free wall myocardium
,”
J. Biomech. Eng.
,
115
, pp.
202
205
.
23.
Zhou
I
, and
Fung
Y. C
,
1997
, “
The degree of nonlinearity and anisotropy of blood vessel elasticity
,”
P. Natl. Acad. Sci. USA
,
94
, pp.
14255
14260
.
24.
Boreik
A. M.
,
Kelly
N. G.
,
Rodarte
J. R.
, and
Wilson
T. A.
,
2000
, “
Biaxial constitutive relations for the passive canine diaphragm
,”
J. Appl. Physiol.
,
89
,
2187
2190
.
25.
Parnaik, Y., Beillas, P., Demetropolis, C. K., Hardy, W. N., Yang, K. H., and King, A. I., 2004, “The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain,” Stapp Car Crash Journal, 48, Paper No. 2004-22-0012.
26.
SAE, 2003, “Instrumentation for Impact Test,” Society of Automotive Engineers Technical Standard, SAE J211:2003.
27.
Mohan, D., 1976, “Passive mechanical properties of human aortic tissue,” Ph.D. Thesis, Univ. of Mich., Ann Arbor, MI.
28.
Vande Geest, J. P., Sacks, M. S., and Vorp, D. A., 2002, “Age-related Differences in the Biaxial Biomechanical Behavior of Human Abdominal Aorta,” Proc. of IMECE2002, 2002 ASME International Mechanical Engineering & Exposition, New Orleans, LA, Paper No. IMECE2002-32509.
29.
Vorp
D. A.
,
Schiro
B. J.
,
Ehrlich
M. P.
,
Juvonen
T. S.
,
Ergin
M. A.
, and
Griffith
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
, pp.
1210
1214
.
30.
Waldman
S. D.
, and
Lee
M. J.
,
2002
, “
Boundary conditions during biaxial testing of planar connective tissues. Part 1: Dynamic Behavior
,”
J. Mater. Sci. Mater. Med.
,
13
(
10
), pp.
933
938
.
31.
Lanir
Y.
,
Lichtenstein
O.
, and
Imanuel
O.
,
1996
, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
J. Biomech. Eng.
,
118
,
41
47
.
This content is only available via PDF.
You do not currently have access to this content.