In this investigation, the stress distribution due to uniaxial tension of an infinitely long, thin, circular cylindrical shell with two equal small circular holes located along a generator is obtained. The problem is solved by the superposition of solutions previously obtained for a cylinder with a single circular hole. The satisfaction of boundary conditions on the free surfaces of the holes, together with uniqueness and overall equilibrium conditions, yields an infinite set of linear algebraic equations involving Hankel and Bessel functions of complex argument. The stress distribution along the boundaries of the holes and the interior of the shell is investigated. In particular, the value of the maximum stress is calculated for a wide range of parameters, including the limiting case in which the holes almost touch and the limiting case in which the radius of the cylinder becomes very large. As is the case for a flat plate, the stress-concentration factor is reduced by the presence of another hole.

This content is only available via PDF.
You do not currently have access to this content.