Three-dimensional finite element simulations of the indentation and sliding of a rigid sphere on a half-space with a harder and stiffer layer are presented. The sphere is modeled by contact elements, thereby avoiding a priori assumptions for the pressure profile. Indentations are performed to normal loads of 100 and 200 times the initial yield load of the substrate material and subsequent sliding is performed at a constant normal load to distances of approximately twice the indentation contact radius. Two complete load cycles are performed in selected cases to assess the effect of repeated sliding on the surface displacements and contact stresses. The effects of layer material properties, interface friction, and normal load on the sliding and residual contact stresses and forward plastic flow are examined. Emphasis is given to the sliding and residual tensile stresses at the surface in order to assess the consequences for crack initiation and subsequent failure as a function of the layer material properties, the coefficient of friction, and normal load. The finite element results are shown to be in good agreement with the results of analytical and experimental studies.

1.
ABAQUS Theory Manual, 1989, Hibbitt, Karlsson, and Sorensen, Inc., Providence, RI.
2.
Barlow
J.
,
1976
, “
Optimal Stress Location in Finite Element Models
,”
International Journal of Numerical Methods in Engineering
, Vol.
10
, pp.
243
251
.
3.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1985
a, “
An Elastic-Plastic Finite Element Model of Rolling Contact, Part 1: Analysis of Single Contacts
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
67
74
.
4.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1985
b, “
An Elastic-Plastic Finite Element Model of Rolling Contact, Part 2: Analysis of Repeated Contacts
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
75
82
.
5.
Childs, T. H. C., 1992, “Deformation and Flow of Metals in Sliding Friction,” Fundamentals of Friction: Macroscopic and Microscopic Processes, Singer, I.L., and Pollock, H. M., eds., NATO ASI Series E: Applied Sciences, Vol. 220, pp. 209–225.
6.
Hamilton
G. M.
, and
Goodman
L. E.
,
1966
, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
33
, pp.
371
376
.
7.
Jiang
Y.
, and
Sehitoglu
H.
,
1994
, “
An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME Journal of Tribology
, Vol.
116
, pp.
577
587
.
8.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K., pp. 159–184.
9.
King
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
International Journal of Solids and Structures
, Vol.
23
, pp.
1657
1664
.
10.
King
R. B.
, and
O’Sullivan
T. C.
,
1987
, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space
,”
International Journal of Solids and Structures
, Vol.
23
, pp.
581
597
.
11.
Komvopoulos
K.
,
Saka
N.
, and
Suh
N. P.
,
1987
, “
The Role of Hard Layers in Lubricated and Dry Sliding
,”
ASME Journal of Tribology
, Vol.
109
, pp.
223
231
.
12.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1995
, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
829
841
.
13.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1995
a, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
62
, pp.
20
28
.
14.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1995
b, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
62
, pp.
29
42
.
15.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1996
, “
Hardness of Thin-Film Media: Scratch Experiments and Finite Element Simulations
,”
ASME Journal of Tribology
, Vol.
118
, pp.
1
11
.
16.
Kulkarni
S. M.
,
Hahn
G. T.
,
Rubin
C. A.
, and
Bhargava
V.
,
1990
, “
Elastoplastic Finite Element Analysis of Three-Dimensional, Pure Rolling Contact at the Shakedown Limit
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
57
65
.
17.
Kulkarni
S. M.
,
Hahn
G. T.
,
Rubin
C. A.
, and
Bhargava
V.
,
1991
a, “
Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact Above the Shakedown Limit
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, pp.
347
353
.
18.
Kulkarni
S. M.
,
Hahn
G. T.
,
Rubin
C. A.
, and
Bhargava
V.
,
1991
b, “
Elasto-Plastic Finite Element Analysis of Repeated Three-Dimensional, Elliptical Rolling Contact With Rail Wheel Properties
,”
ASME Journal of Tribology
, Vol.
113
, pp.
434
441
.
19.
Lawn, B., 1992, “Friction Processes in Brittle Fracture,” Fundamentals of Friction: Macroscopic and Microscopic Processes, Singer, I. L., and Pollock, H. M., eds., NATO ASI Series E: Applied Sciences, Vol. 220, pp. 137–165.
20.
Merwin
J. E.
, and
Johnson
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
177
, pp.
676
690
.
21.
O’Sullivan
T. C.
, and
King
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space
,”
ASME Journal of Tribology
, Vol.
110
, pp.
235
240
.
22.
Tian
H.
, and
Saka
N.
,
1991
a, “
Finite Element Analysis of an Elastic-Plastic Two-Layer Half-Space: Normal Contact
,”
Wear
, Vol.
148
, pp.
47
68
.
23.
Tian
H.
, and
Saka
N.
,
1991
b, “
Finite Element Analysis of an Elastic-Plastic Two-Layer Half-Space: Sliding Contact
,”
Wear
, Vol.
148
, pp.
261
285
.
24.
Wu
T. W.
,
1991
, “
Microscratch and Load Relaxation Tests for Ultra-thin Films
,”
Journal of Materials Research
, Vol.
6
, pp.
407
426
.
This content is only available via PDF.
You do not currently have access to this content.