Constrained dynamic equations of motion of serial multibody systems consisting of rigid bodies in a serial kinematic chain are derived in this paper. First, the Newton-Euler equations of motion of the decoupled rigid bodies of the system at hand are written. Then, with the aid of the decoupled natural orthogonal complement (DeNOC) matrices associated with the velocity constraints of the connecting bodies, the Euler-Lagrange independent equations of motion are derived. The De NOC is essentially the decoupled form of the natural orthogonal complement (NOC) matrix, introduced elsewhere. Whereas the use of the latter provides recursive order n—n being the degrees-of-freedom of the system at hand—inverse dynamics and order n3 forward dynamics algorithms, respectively, the former leads to recursive order n algorithms for both the cases. The order n algorithms are desirable not only for their computational efficiency but also for their numerical stability, particularly, in forward dynamics and simulation, where the system’s accelerations are solved from the dynamic equations of motion and subsequently integrated numerically. The algorithms are illustrated with a three-link three-degrees-of-freedom planar manipulator and a six-degrees-of-freedom Stanford arm.

1.
Angeles, J., 1997, Fundamentals of Robotic Mechanical Systems, Springer-Verlag, New York.
2.
Angeles
J.
, and
Lee
S.
,
1988
, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
55
, pp.
243
244
.
3.
Angeles
J.
, and
Ma
O.
,
1988
, “
Dynamic Simulation of n-axis Serial Robotic Manipulators Using a Natural Orthogonal Complement
,”
Int. J. of Rob. Res.
, Vol.
7
, No.
5
, pp.
32
47
.
4.
Angeles
J.
,
Ma
O.
, and
Rojas
A.
,
1989
, “
An Algorithm for the Inverse Dynamics of n-Axis General Manipulator Using Kane's Formulation of Dynamical Equations
,”
Computers and Mathematics with Applications
, Vol.
17
, No.
12
, pp.
1545
1561
.
5.
Armstrong, W. W., 1979, “Recursive Solution to the Equations of Motion of an n-Link Manipulator,” Proc. of the 5th World Cong. on Th. of Mach. and Mech., Vol. 2, Montreal, Canada, ASME, New York, pp. 1343–1346.
6.
Ascher
U. M.
,
Pai
D. K.
, and
Cloutier
B. P.
,
1997
, “
Forward Dynamics, Elimination Methods, and Formulation Stiffness in Robot Simulation
,”
Int. J. of Rob. Res.
, Vol.
16
, No.
6
, pp.
749
758
.
7.
Cyril, X., 1988, “Dynamics of Flexible-Link Manipulators,” Ph.D. thesis, McGill University, Canada.
8.
Denavit
J.
, and
Hartenberg
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
77
, pp.
215
221
.
9.
Featherstone
R.
,
1983
, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias
,”
Int. J. of Rob. Res.
, Vol.
2
, No.
1
, pp.
13
30
.
10.
Fijany, A., Shaft, I., and D’Eleuterio, M. T. D., 1995, “Parallel O(log N) Algorithms for Computation of Manipulator Forward Dynamics,” IEEE Trans. on R&A, Vol. 11, No. 3.
11.
Hollerbach
J. M.
,
1980
, “
A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. on Sys., Man, and Cybernatics
, Vol.
SMC-10
, pp.
730
736
.
12.
Huston
H.
, and
Passerello
C. E.
,
1974
, “
On Constraint Equations—A New Approach
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
41
, pp.
1130
1131
.
13.
Jain
A.
, and
Rodriguez
G.
,
1995
, “
Diagonalized Lagrangian Robot Dynamics
,”
IEEE Trans. on R&A
, Vol.
11
, No.
4
, pp.
571
584
.
14.
Kamman
J. W.
, and
Huston
R. L.
,
1984
, “
Dynamics of Constrained Multibody Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
51
, pp.
899
903
.
15.
Kane
T. R.
, and
Levinson
D. A.
,
1983
, “
The Use of Kane's Dynamical Equations for Robotics
,”
Int. J. of Rob. Res.
, Vol.
2
, No.
3
, pp.
3
21
.
16.
Lilly, K. W., and Orin, D. E., 1990, “Efficient O(n) Computation of the Operational Space Inertia Matrix,” Proc. of the IEEE Conf. on R&A, Vol. 2, Cincinnati, OH, May 13–18, pp. 1014–1019.
17.
Luh
J. Y. S.
,
Walker
M. W.
, and
Paul
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME Journal of Dynamic Systems, Measurement and Control
, Vol.
102
, pp.
69
76
.
18.
McMillan
S.
, and
Orin
D. E.
,
1995
, “
Efficient Computation of Articulated-Body Inertias Using Successive Axial Screws
,”
IEEE Trans. on R&A
, Vol.
11
, No.
4
, pp.
606
611
.
19.
Press, W. H., Teukolsky, S. A., Vellerling, W. T., and Flannery, B. P., 1997, Numerical Recipes in C, 2nd Ed., Cambridge University Press, New Delhi.
20.
Rodriguez
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE Trans. on R&A
, Vol.
RA–3
, No.
6
, pp.
624
639
.
21.
Rodriguez
G.
,
Jain
A.
, and
Kreutz-Delgado
K.
,
1991
, “
A Spatial Operator Algebra for Manipulation Modeling and Control
,”
Int. J. of Rob. Res.
, Vol.
10
, No.
4
, pp.
371
381
.
22.
Rodriguez
G.
, and
Krentz-Delgado
K.
,
1992
, “
Spatial Operator Factorization and Inversion of the Manipulator Mass Matrix
,”
IEEE Trans. on R&A
, Vol.
8
, No.
1
, pp.
65
76
.
23.
Saha
S. K.
, and
Angeles
J.
,
1991
, “
Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, pp.
238
243
.
24.
Saha
S. K.
,
1997
, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. on R&A
, Vol.
13
, No.
2
, pp.
301
304
.
25.
Schiehlen
W.
,
1991
, “
Computational Aspects in Multibody System Dynamics
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
90
, No.
1–3
, pp.
569
582
.
26.
Sciavicco, L., and Siciliano, B., 1996, Modeling and Control of Robot Manipulators, McGraw-Hill, New York.
27.
Stewart, G. E., 1973, Introduction to Matrix Computations, Academic Press, San Diego, CA.
28.
Walker
M. W.
, and
Orin
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME Journal of Dynamic Systems, Measurement and Control
, Vol.
104
, pp.
205
211
.
29.
Wehage
R. A.
, and
Haug
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME Journal of Mechanical Design
, Vol.
104
, pp.
247
255
.
This content is only available via PDF.
You do not currently have access to this content.