A systematic approach is proposed to derive the governing equations and boundary conditions for strain gradient plasticity in plane-stress deformation. The displacements, strains, stresses, strain gradients and higher-order stresses in three-dimensional strain gradient plasticity are expanded into a power series of the thickness h in the out-of-plane direction. The governing equations and boundary conditions for plane stress are obtained by taking the limit h0. It is shown that, unlike in classical plasticity theories, the in-plane boundary conditions and even the order of governing equations for plane stress are quite different from those for plane strain. The kinematic relations, constitutive laws, equilibrium equation, and boundary conditions for plane-stress strain gradient plasticity are summarized in the paper. [S0021-8936(00)02301-1]

1.
Nix
,
W. D.
,
1989
, “
Mechanical Properties of Thin Films
,”
Metall. Trans. A
,
20A
, pp.
2217
2245
.
2.
De Guzman
,
M. S.
,
Newbauer
,
G.
,
Flinn
,
P.
, and
Nix
,
W. D.
,
1993
, “
The Role of Indentation Depth on the Measured Hardness of Materials
,”
Materials Research Symposium Proceedings
,
308
, pp.
613
618
.
3.
Stelmashenko
,
N. A.
,
Walls
,
A. G.
,
Brown
,
L. M.
, and
Milman
,
Y. V.
,
1993
, “
Microindentations on W and Mo Oriented Single Crystals: An STM Study
,”
Acta Metall. Mater.
,
41
, pp.
2855
2865
.
4.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
, pp.
853
863
.
5.
Poole
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
1996
, “
Micro-Hardness of Annealed and Work-Hardened Copper Polycrystals
,”
Scr. Metall. Mater.
,
34
, pp.
559
564
.
6.
McElhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
,
13
, pp.
1300
1306
.
7.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
8.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Metall.
,
46
, pp.
5109
5115
.
9.
Lloyd
,
D. J.
,
1994
, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
, pp.
1
23
.
10.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
J. Eng. Mater. Technol.
,
106
, pp.
326
330
.
11.
Muhlhaus
,
H. B.
, and
Aifantis
,
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
, pp.
845
857
.
12.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
1857
.
13.
Fleck, N. A., and Hutchinson, J. W., 1997, “Strain Gradient Plasticity,” Advances in Applied Mechanics, J. W. Hutchinson, and T. Y. Wu, eds., Vol. 33, Academic Press, San Diego, CA, pp. 295–361.
14.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-homogeneous Alloys
,”
Philos. Mag.
,
21
, pp.
399
424
.
15.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
, pp.
153
162
.
16.
Cottrell, A. H., 1964, The Mechanical Properties of Materials, John Wiley and Sons, New York, p. 277.
17.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple Stresses
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
385
414
.
18.
Koiter
,
W. T.
,
1964
, “
Couple Stresses in the Theory of Elasticity, I and II
,”
Proceedings. Koninklijke Nederlandse Akademie van Wetenschappen (B)
,
67
, pp.
17
44
.
19.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
, pp.
51
78
.
20.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
, pp.
417
438
.
21.
Curtin
,
M. E.
,
1965
, “
Thermodynamics and the Possibility of Spatial Interaction in Elastic Materials
,”
Arch. Ration. Mech. Anal.
,
19
, pp.
339
352
.
22.
Acharya
,
A.
, and
Shawki
,
T. G.
,
1995
, “
Thermodynamic Restrictions on Constitutive Equations for Second-Deformation-Gradient Inelastic Behavior
,”
J. Mech. Phys. Solids
,
43
, pp.
1751
1772
.
23.
Acharya, A., and Bassani, J. L., 1996, “On Non-local Flow Theories That Preserve the Classical Structure of Incremental Boundary Value Problems,” Proceedings of the IUTAM Symposium on Micromechanics of Plasticity and Damage at Multiphase Materials, A. Pineau and A. Zaoui, eds., Kluwer Academic Press, Dordrecht, The Netherlands, pp. 3–10.
24.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
1998
, “
The Mechanics of Size-dependent Indentation
,”
J. Mech. Phys. Solids
,
46
, pp.
2049
2068
.
25.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
, pp.
411
425
.
26.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
1263
.
27.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
, pp.
99
128
.
28.
Shu
,
J. Y.
, and
Fleck
,
N. A.
,
1998
, “
The Prediction of a Size-Effect in Microindentation
,”
Int. J. Solids Struct.
,
35
, pp.
1363
1383
.
29.
Wang, W., Huang, Y., Hsia, K. J., Hu, K. X., Yeh, C. P., and Chandra, A., 1999, “A Study of Ultra-thin Beams by Strain Gradient Plasticity,” submitted for publication.
30.
Huang, Y., Zhang, L., Guo, T. F., and Hwang, K.-C., 1995, “Near-Tip Fields for Cracks in Materials With Strain Gradient Effects,” IUTAM Symposium on Nonlinear Analysis of Fracture, J. R. Willis, ed., Cambridge University, Sept. 3–7, pp. 231–243.
31.
Huang, Y., Zhang, L., Guo, T. F., and Hwang, K.-C., 1997, “Fracture of Materials With Strain Gradient Effects,” Advances in Fracture Research, Ninth International Conference of Fracture, Sydney, Australia, Apr. 1–5, pp. 2275–2286.
32.
Huang
,
Y.
,
Zhang
,
L.
,
Guo
,
T. F.
, and
Hwang
,
K. C.
,
1997
, “
Mixed Mode Near-Tip Fields for Cracks in Materials With Strain Gradient Effects
,”
J. Mech. Phys. Solids
,
45
, pp.
439
465
.
33.
Huang, Y., Hwang, K. C., and Guo, T. F., 1998, “Fracture of Materials at the Microscale, Mechanical Problems of Advanced Engineering Materials” M. Senoo, B. Y. Xu, M. Tokuda, and B. Bundara, eds., Third International Symposium on Microstructures and Mechanical Properties of New Engineering Materials, Mei University Press, Tsu, Japan, pp. 3–12.
34.
Huang, Y., Chen, J. Y., Guo, T. F., Zhang, L., and Hwang, K. C., 2000, “Analytical and Numerical Studies on Mode I and Mode II Fracture in Elastic-plastic Materials With Strain Gradient Effects,” Int. J. Fract., in press.
35.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
,
1996
, “
Crack Tip Fields in Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
44
, pp.
1621
1648
.
36.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1997
, “
Steady-State Crack Growth and Work of Fracture for Solids Characterized by Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
45
, pp.
1253
1273
.
37.
Chen
,
J. Y.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
1998
, “
Mode I and Mode II Plane-Stress Near-Tip Fields for Cracks in Materials With Strain Gradient Effects
,”
Key Eng. Mater.
,
145
, pp.
19
28
.
38.
Smyshlyaev
,
V. P.
, and
Fleck
,
N. A.
,
1996
, “
The Role of Strain Gradients in the Grain Size Effect for Polycrystals
,”
J. Mech. Phys. Solids
,
44
, pp.
465
495
.
39.
Love, A. E. H., 1927, A Treatise of Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, UK.
You do not currently have access to this content.