An exact closed-form solution is obtained for the transient response of an infinite isotropic elastic medium containing a spherical cavity subjected to torsional surface loading using the residual variable method. The main advantage of the present approach is that it eliminates the computational problems arising in the existing methods which are primarily based on Fourier or Laplace transformation techniques. Extensive numerical results for the circumferential displacements and shear stresses at various locations are presented graphically for Heaviside loadings. [S0021-8936(00)01102-8]

1.
Achenbach, J. D., 1972, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
2.
Eringen, A. C., and Suhubi, E. S., 1974–1975, Elastodynamics, Vols. 1 and 2, Academic Press, New York.
3.
Miklowitz, J., 1978, The Theory of Elastic Waves and Waveguides, North-Holland, Amsterdam.
4.
Gaunaurd
,
G. C.
,
1989
, “
Elastic and Acoustic Resonance Wave Scattering
,”
Appl. Mech. Rev.
,
42
, pp.
143
193
.
5.
Sato
,
Y.
,
Usami
,
T.
, and
Ewing
,
M.
,
1962
, “
Basic Study on the Oscillation of a Homogeneous Elastic Sphere, Part IV—Propagation of Disturbances on the Sphere
,”
Geophysics
,
31
, pp.
237
241
.
6.
Godin
,
Y. A.
,
1995
, “
An Exact Solution to a Problem of Axisymmetric Torsion of an Elastic Space With a Spherical Crack
,”
Q. Appl. Math.
,
LIII
, pp.
679
682
.
7.
Chadwick
,
P.
, and
Trowbridge
,
E. A.
,
1967
, “
Oscillations of a Rigid Sphere Embedded in an Infinite Elastic Solid, Part I—Torsional Oscillations
,”
Proc. Cambridge Philos. Soc.
,
63
, pp.
1189
1205
.
8.
Chadwick
,
P.
, and
Trowbridge
,
E. A.
,
1967
, “
Oscillations of a Rigid Sphere Embedded in an Infinite Elastic Solid, Part II—Rectilinear Oscillations
,”
Proc. Cambridge Philos. Soc.
,
63
, pp.
1207
1227
.
9.
Chadwick
,
P.
, and
Trowbridge
,
E. A.
,
1967
, “
Elastic Wave Fields Generated by Scalar Wave Functions
,”
Proc. Cambridge Philos. Soc.
,
63
, pp.
1177
1187
.
10.
Tupholme
,
G. E.
,
1983
, “
Elastic Pulse Generation by Tractions Applied to a Spherical Cavity
,”
Appl. Sci. Res.
,
40
, pp.
299
325
.
11.
Tupholme
,
G. E.
,
1967
, “
Generation of an Axisymmetrical Acoustic Pulse by a Deformable Sphere
,”
Proc. Cambridge Philos. Soc.
,
63
, pp.
1285
1308
.
12.
Chadwick
,
P.
, and
Johnson
,
A. F.
,
1969
, “
Torsional Oscillations of a Rigid Convex Inclusion Embedded in an Elastic Solid
,”
J. Inst. Math. Appl.
,
5
, pp.
283
307
.
13.
Geers
,
T. L.
,
1969
, “
Excitation of an Elastic Cylindrical Shell by a Transient Acoustic Wave
,”
ASME J. Appl. Mech.
,
36
, pp.
459
469
.
14.
Akkas
,
N.
,
1979
, “
Residual Potential Method in Spherical Coordinates and Related Approximations
,”
Mech. Res. Commun.
,
6
, pp.
257
262
.
15.
Akkas
,
N.
,
1985
, “
The Residual Variable Method and its Applications
,”
Acta Mech.
,
55
, pp.
203
217
.
16.
Akkas
,
N.
, and
Zakout
,
U.
,
1997
, “
Transient Response of an Infinite Elastic Medium Containing a Spherical Cavity With and Without a Shell Embedment
,”
Int. J. Eng. Sci.
,
35
, pp.
89
112
.
17.
Zakout
,
U.
, and
Akkas
,
N.
,
1997
, “
Transient Response of a Cylindrical Cavity With and Without a Bonded Shell in an Infinite Elastic Medium
,”
Int. J. Eng. Sci.
,
35
, pp.
1203
1220
.
18.
Abramowitz, M., and Stegun, I. A., eds., 1965, Handbook of Mathematical Functions, Dover, New York.
You do not currently have access to this content.