An exact closed-form solution is obtained for the transient response of an infinite isotropic elastic medium containing a spherical cavity subjected to torsional surface loading using the residual variable method. The main advantage of the present approach is that it eliminates the computational problems arising in the existing methods which are primarily based on Fourier or Laplace transformation techniques. Extensive numerical results for the circumferential displacements and shear stresses at various locations are presented graphically for Heaviside loadings. [S0021-8936(00)01102-8]
Issue Section:
Technical Papers
1.
Achenbach, J. D., 1972, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
2.
Eringen, A. C., and Suhubi, E. S., 1974–1975, Elastodynamics, Vols. 1 and 2, Academic Press, New York.
3.
Miklowitz, J., 1978, The Theory of Elastic Waves and Waveguides, North-Holland, Amsterdam.
4.
Gaunaurd
, G. C.
, 1989
, “Elastic and Acoustic Resonance Wave Scattering
,” Appl. Mech. Rev.
, 42
, pp. 143
–193
.5.
Sato
, Y.
, Usami
, T.
, and Ewing
, M.
, 1962
, “Basic Study on the Oscillation of a Homogeneous Elastic Sphere, Part IV—Propagation of Disturbances on the Sphere
,” Geophysics
, 31
, pp. 237
–241
.6.
Godin
, Y. A.
, 1995
, “An Exact Solution to a Problem of Axisymmetric Torsion of an Elastic Space With a Spherical Crack
,” Q. Appl. Math.
, LIII
, pp. 679
–682
.7.
Chadwick
, P.
, and Trowbridge
, E. A.
, 1967
, “Oscillations of a Rigid Sphere Embedded in an Infinite Elastic Solid, Part I—Torsional Oscillations
,” Proc. Cambridge Philos. Soc.
, 63
, pp. 1189
–1205
.8.
Chadwick
, P.
, and Trowbridge
, E. A.
, 1967
, “Oscillations of a Rigid Sphere Embedded in an Infinite Elastic Solid, Part II—Rectilinear Oscillations
,” Proc. Cambridge Philos. Soc.
, 63
, pp. 1207
–1227
.9.
Chadwick
, P.
, and Trowbridge
, E. A.
, 1967
, “Elastic Wave Fields Generated by Scalar Wave Functions
,” Proc. Cambridge Philos. Soc.
, 63
, pp. 1177
–1187
.10.
Tupholme
, G. E.
, 1983
, “Elastic Pulse Generation by Tractions Applied to a Spherical Cavity
,” Appl. Sci. Res.
, 40
, pp. 299
–325
.11.
Tupholme
, G. E.
, 1967
, “Generation of an Axisymmetrical Acoustic Pulse by a Deformable Sphere
,” Proc. Cambridge Philos. Soc.
, 63
, pp. 1285
–1308
.12.
Chadwick
, P.
, and Johnson
, A. F.
, 1969
, “Torsional Oscillations of a Rigid Convex Inclusion Embedded in an Elastic Solid
,” J. Inst. Math. Appl.
, 5
, pp. 283
–307
.13.
Geers
, T. L.
, 1969
, “Excitation of an Elastic Cylindrical Shell by a Transient Acoustic Wave
,” ASME J. Appl. Mech.
, 36
, pp. 459
–469
.14.
Akkas
, N.
, 1979
, “Residual Potential Method in Spherical Coordinates and Related Approximations
,” Mech. Res. Commun.
, 6
, pp. 257
–262
.15.
Akkas
, N.
, 1985
, “The Residual Variable Method and its Applications
,” Acta Mech.
, 55
, pp. 203
–217
.16.
Akkas
, N.
, and Zakout
, U.
, 1997
, “Transient Response of an Infinite Elastic Medium Containing a Spherical Cavity With and Without a Shell Embedment
,” Int. J. Eng. Sci.
, 35
, pp. 89
–112
.17.
Zakout
, U.
, and Akkas
, N.
, 1997
, “Transient Response of a Cylindrical Cavity With and Without a Bonded Shell in an Infinite Elastic Medium
,” Int. J. Eng. Sci.
, 35
, pp. 1203
–1220
.18.
Abramowitz, M., and Stegun, I. A., eds., 1965, Handbook of Mathematical Functions, Dover, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.