The dynamic stability of a poroelastic column subjected to a longitudinal periodic force is investigated. The column material is assumed to be transversely isotropic with respect to the column axis, and the pore fluid flow is possible in the axial direction only. The motion of the column is governed by two coupled equations, for which the stability boundaries are determined analytically by using the multiple-scales method. It is shown that due to the fluid diffusion the stability regions are expanded, relative to the elastic (drained) case. The critical (minimum) loading amplitude, for which instability occurs, is also given. [S0021-8936(00)00902-8]

1.
Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Halden Day, San Francisco.
2.
Timoshenko, S. P., and Gere, M. G., 1961, Theory of Elastic Stability, McGraw-Hill Kogakusha, LTD, Tokyo.
3.
Evan-Iwanovski
,
R. M.
,
1965
, “
On the Parametric Response of Structures
,”
Appl. Mech. Rev. V-I
,
18
, pp.
699
702
.
4.
Evan-Iwanovski, R. M., 1976, Resonant Oscillations in Mechanical Systems, Elsevier, Amsterdam.
5.
Stevens
,
K. K.
,
1966
, “
On the Parametric Excitation of a Viscoelastic Column
,”
AIAA J.
,
12
, pp.
2111
2116
.
6.
Touati
,
D.
, and
Cederbaum
,
G.
,
1994
, “
Dynamic Stability of Nonlinear Viscoelastic Plates
,”
Int. J. Solids Struct.
,
31
, No.
17
, pp.
2367
2376
.
7.
Biot
,
M. A.
,
1941
, “
General Theory of Three Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
165
.
8.
Nowinski
,
J. L.
, and
Davis
,
C. F.
,
1972
, “
The Flexure and Torsion of Bones Viewed as Anisotropic Poroelastic Bodies
,”
Int. J. Eng. Sci.
,
10
, pp.
1063
1079
.
9.
Taber
,
L. A.
,
1992
, “
A Theory for Transverse Deflection of Poroelastic Plates
,”
ASME J. Appl. Mech.
,
59
, pp.
628
634
.
10.
Yang
,
M.
,
Taber
,
L. A.
, and
Clark
,
E. B.
,
1994
, “
A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
,”
ASME J. Biomech. Eng.
,
116
, pp.
213
223
.
11.
Zhang
,
D.
, and
Cowin
,
S. C.
,
1994
, “
Oscillatory Bending of a Poroelastic Beam
,”
J. Mech. Phys. Solids
,
42
, pp.
1575
1599
.
12.
Li
,
L. P.
,
Schulgasser
,
K.
, and
Cederbaum
,
G.
,
1995
, “
Theory of Poroelastic Beams With Axial Diffusion
,”
J. Mech. Phys. Solids
,
43
, No.
12
, pp.
2023
2042
.
13.
Li
,
L. P.
,
Cederbaum
,
G.
, and
Schulgasser
,
K.
,
1996
, “
Vibration of Poroelastic Beams With Axial Diffusion
,”
Eur. J. Mech.
,
15
, No.
6
, pp.
1077
1094
.
14.
Li
,
L. P.
,
Schulgasser
,
K.
, and
Cederbaum
,
G.
,
1997
, “
Buckling of Poroelastic Columns With Axial Diffusion
,”
Int. J. Mech. Sci.
,
39
, No.
4
, pp.
409
415
.
15.
Bender, C. M., and Orszag, S. A., 1984, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore.
You do not currently have access to this content.