The dynamic stability of a poroelastic column subjected to a longitudinal periodic force is investigated. The column material is assumed to be transversely isotropic with respect to the column axis, and the pore fluid flow is possible in the axial direction only. The motion of the column is governed by two coupled equations, for which the stability boundaries are determined analytically by using the multiple-scales method. It is shown that due to the fluid diffusion the stability regions are expanded, relative to the elastic (drained) case. The critical (minimum) loading amplitude, for which instability occurs, is also given. [S0021-8936(00)00902-8]
Issue Section:
Technical Papers
1.
Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Halden Day, San Francisco.
2.
Timoshenko, S. P., and Gere, M. G., 1961, Theory of Elastic Stability, McGraw-Hill Kogakusha, LTD, Tokyo.
3.
Evan-Iwanovski
, R. M.
, 1965
, “On the Parametric Response of Structures
,” Appl. Mech. Rev. V-I
, 18
, pp. 699
–702
.4.
Evan-Iwanovski, R. M., 1976, Resonant Oscillations in Mechanical Systems, Elsevier, Amsterdam.
5.
Stevens
, K. K.
, 1966
, “On the Parametric Excitation of a Viscoelastic Column
,” AIAA J.
, 12
, pp. 2111
–2116
.6.
Touati
, D.
, and Cederbaum
, G.
, 1994
, “Dynamic Stability of Nonlinear Viscoelastic Plates
,” Int. J. Solids Struct.
, 31
, No. 17
, pp. 2367
–2376
.7.
Biot
, M. A.
, 1941
, “General Theory of Three Dimensional Consolidation
,” J. Appl. Phys.
, 12
, pp. 155
–165
.8.
Nowinski
, J. L.
, and Davis
, C. F.
, 1972
, “The Flexure and Torsion of Bones Viewed as Anisotropic Poroelastic Bodies
,” Int. J. Eng. Sci.
, 10
, pp. 1063
–1079
.9.
Taber
, L. A.
, 1992
, “A Theory for Transverse Deflection of Poroelastic Plates
,” ASME J. Appl. Mech.
, 59
, pp. 628
–634
.10.
Yang
, M.
, Taber
, L. A.
, and Clark
, E. B.
, 1994
, “A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
,” ASME J. Biomech. Eng.
, 116
, pp. 213
–223
.11.
Zhang
, D.
, and Cowin
, S. C.
, 1994
, “Oscillatory Bending of a Poroelastic Beam
,” J. Mech. Phys. Solids
, 42
, pp. 1575
–1599
.12.
Li
, L. P.
, Schulgasser
, K.
, and Cederbaum
, G.
, 1995
, “Theory of Poroelastic Beams With Axial Diffusion
,” J. Mech. Phys. Solids
, 43
, No. 12
, pp. 2023
–2042
.13.
Li
, L. P.
, Cederbaum
, G.
, and Schulgasser
, K.
, 1996
, “Vibration of Poroelastic Beams With Axial Diffusion
,” Eur. J. Mech.
, 15
, No. 6
, pp. 1077
–1094
.14.
Li
, L. P.
, Schulgasser
, K.
, and Cederbaum
, G.
, 1997
, “Buckling of Poroelastic Columns With Axial Diffusion
,” Int. J. Mech. Sci.
, 39
, No. 4
, pp. 409
–415
.15.
Bender, C. M., and Orszag, S. A., 1984, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore.
Copyright © 2000
by ASME
You do not currently have access to this content.