Bifurcations of a circular cylinder are studied, within the context of the triaxial confining pressure test, for pressure sensitive solids. Material response is modeled by large strain versions of flow and deformation theories of plasticity in conjunction with the Drucker-Prager solid. An axially symmetric deformation pattern is assumed prior to bifurcation and only diffuse modes within the elliptic regime are considered. The governing equations are solved analytically in terms of Bessel functions and a search procedure is employed to trace bifurcation loads. Deformation theory predicts critical stresses which are consistently below flow theory results, and provides practical upper bounds on experimentally observed values of peak stresses. [S0021-8936(00)01403-3]

1.
Cheng
,
S. Y.
,
Ariaratnam
,
S. T.
, and
Dubey
,
R. N.
,
1971
, “
Axisymmetric Bifurcation in an Elastic-Plastic Cylinder Under Axial Load and Lateral Hydrostatic Pressure
,”
Q. Appl. Math.
,
21
, pp.
41
51
.
2.
Hutchinson
,
J. W.
, and
Miles
,
J. P.
,
1974
, “
Bifurcation Analysis of the Onset of Necking in an Elastic-Platic Cylinder Under Uniaxial Tension
,”
J. Mech. Phys. Solids
,
22
, pp.
61
71
.
3.
Miles
,
J. P.
, and
Nuwayhid
,
U. A.
,
1985
, “
Bifurcation in Compressible Elastic-Plastic Cylinder Under Uniaxial Tension
,”
Appl. Sci. Res.
,
42
, pp.
33
54
.
4.
Drescher
,
A.
, and
Vardoulakis
,
I.
,
1982
, “
Geometric Softening in Triaxial Tests on Granular Material
,”
Geotechnique
,
32
, pp.
291
303
.
5.
Vardoulakis
,
I.
,
1983
, “
Rigid Granular Plasticity Model and Bifurcation in the Triaxial Test
,”
Acta Mech.
,
49
, pp.
57
79
.
6.
Chau
,
K.-T.
,
1992
, “
Non-Normality and Bifurcation in a Compressible Pressure-Sensitive Circular Cylinder Under Axially Symmetric Tension and Compression
,”
Int. J. Solids Struct.
,
29
, pp.
801
824
.
7.
Yatomi, C., and Shibi, T., 1997, “Antisymmetric Bifurcation Analysis in a Circular Cylinder of a Non-Coaxial Cam-Clay Model,” Deformation and Progressive Failure in Geomechanics, IS-Nagoya, 1997, Pergamon, Elsevier, Oxford, UK, pp. 9–14.
8.
Sulem
,
J.
, and
Vardoulakis
,
I.
,
1990
, “
Bifurcation Analysis of the Triaxial Test on Rock Specimens: A Theoretical Model for Shape and Size Effect
,”
Acta Mech.
,
83
, pp.
195
212
.
9.
Chau
,
K.-T.
,
1993
, “
Antisymmetric Bifurcation in a Compressible Pressure-Sensitive Circular Cylinder Under Axisymmetric Tension and Compression
,”
ASME J. Appl. Mech.
,
60
, pp.
282
289
.
10.
Chau
,
K.-T.
,
1995
, “
Buckling, Barelling, and Surface Instabilities of a Finite, Transversely Isotropic Circular Cylinder
,”
Q. Appl. Math.
,
53
, pp.
225
244
.
11.
Vardoulakis, I., and Sulem, J., 1995, “Bifurcation Analysis in Geomechanics,” Blackie A & P, Chapman & Hall, London.
12.
Papanastasiou
,
P.
, and
Durban
,
D.
,
1999
, “
Bifurcation of Elastoplastic Pressure Sensitive Hollow Cylinders
,”
ASME J. Appl. Mech.
,
66
, pp.
117
123
.
13.
Durban
,
D.
, and
Papanastasiou
,
P.
,
1997
, “
Cylindrical Cavity Expansion and Contraction in Pressure Sensitive Geomaterials
,”
Acta Mech.
,
122
, pp.
99
122
.
14.
Kardomateas
,
G. A.
,
1993
, “
Stability Loss in Thick Transversely Isotropic Cylindrical Shells Under Axial Compression
,”
ASME J. Appl. Mech.
,
60
, pp.
506
513
.
15.
Elliot
,
H. A.
,
1948
, “
Three-Dimensional Stress Distribution in Hexagonal Aelotropic Crystals
,”
Proc. Cambridge Philos. Soc.
,
44
, pp.
522
533
.
16.
Papanastasiou
,
P.
, and
Durban
,
D.
,
1997
, “
Elastoplastic Analysis of Cylindrical Cavity Problems in Geomaterials
,”
Int. J. Num. Anal. Meth. Geomech.
,
21
, pp.
121
132
.
17.
Papamichos
,
E.
, and
Vardoulakis
,
I.
,
1995
, “
Shear Band Formation in Sand According to Non-Coaxial Plasticity Model
,”
Geotechnique
,
45
, pp.
649
661
.
You do not currently have access to this content.