Exact solutions are presented in closed form for the axisymmetric stress and displacement fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a transversely isotropic elastic solid. This is an extension of a previous paper for an isotropic elastic solid to a transversely isotropic solid. The strain energy is also shown. The method of Green’s functions is used. The numerical results for stress distributions are compared with those for an isotropic elastic solid.
1.
Mura, T., 1982, Micromechanics of Defects in Solids, Martinus-Nijhoff, Dordrecht, The Netherlands.
2.
Mura
, T.
, 1988
, “Inclusion Problem
,” Appl. Mech. Rev.
, 41
(1
), pp. 15
–20
.3.
Takao
, Y.
, Taya
, M.
, and Chou
, T. W.
, 1981
, “Stress Field Due to a Cylindrical Inclusion With Constant Axial Eigenstrain in an Infinite Elastic Body
,” ASME J. Appl. Mech.
, 48
, pp. 853
–858
.4.
Hasegawa
, H.
, Lee
, V. G.
, and Mura
, T.
, 1992
, “The Stress Fields Caused by a Circular Cylindrical Inclusion
,” ASME J. Appl. Mech.
, 59, Part 2
, pp. s107–s114
s107–s114
.5.
Hasegawa
, H.
, Lee
, V. G.
, and Mura
, T.
, 1993
, “Hollow Circular Cylindrical Inclusion at the Surface of a Half-Space
,” ASME J. Appl. Mech.
, 60
, pp. 33
–40
.6.
Wu
, L. Z.
, and Du
, S. Y.
, 1995
, “The Elastic Field Caused by a Circular Cylindrical Inclusion—Part I
,” ASME J. Appl. Mech.
, 62
, pp. 579
–584
.7.
Wu
, L. Z.
, and Du
, S. Y.
, 1995
, “The Elastic Field Caused by a Circular Cylindrical Inclusion—Part II
,” ASME J. Appl. Mech.
, 62
, pp. 585
–589
.8.
Wu
, L. Z.
, and Du
, S. Y.
, 1996
, “The Elastic Field in a Half-Space With a Circular Cylindrical Inclusion
,” ASME J. Appl. Mech.
, 63
, pp. 925
–932
.9.
Hasegawa
, H.
, and Yoshiie
, K.
, 1996
, “Tension of Elastic Solid With Elastic Circular-Cylindrical Inclusion
,” JSME Int. J., Ser. A
, 39
(2
), pp. 186
–191
.10.
Hasegawa
, H.
, and Ariyoshi
, S.
, 1996
, “Fundamental Solution for Axisymmetric Problems of Transversely Isotropic Elastic Solid,” (in Japanese
), Trans. Jpn. Soc. Mech. Eng., Ser. A
, 62
(596
), pp. 1059
–1063
.11.
Eubanks
, R. A.
, and Sternberg
, E.
, 1954
, “On the Axisymmetric Problem of Elasticity Theory for Medium With Transverse Isotropy
,” J. Ration. Mech. Anal.
,3
(1
), pp. 89
–101
.12.
Ishida
, R.
, 1987
, “Crack Problem in a Transversely Isotropic Medium With a Penny-Shaped Crack Under Transient Thermal Loading
,” Z. Angew. Math. Mech.
, 67
(2
), pp. 93
–99
.13.
Erdelyi, A., 1954, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York.
14.
Eason
, G.
, Noble
, B.
, and Sneddon
, I. N.
, 1955
, “On Certain Integrals of Lipschitz-Hankel Type Involving Products of Bessel Functions
,” Philos. Trans. R. Soc. London, Ser. A
, 247
(A935
), pp. 529
–551
.15.
Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd Ed., Springer-Verlag, New York.
16.
Chiu
, Y. P.
, 1977
, “On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,” ASME J. Appl. Mech.
, 44, pp.
587
–590
.Copyright © 2003
by ASME
You do not currently have access to this content.