Exact solutions are presented in closed form for the axisymmetric stress and displacement fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a transversely isotropic elastic solid. This is an extension of a previous paper for an isotropic elastic solid to a transversely isotropic solid. The strain energy is also shown. The method of Green’s functions is used. The numerical results for stress distributions are compared with those for an isotropic elastic solid.

1.
Mura, T., 1982, Micromechanics of Defects in Solids, Martinus-Nijhoff, Dordrecht, The Netherlands.
2.
Mura
,
T.
,
1988
, “
Inclusion Problem
,”
Appl. Mech. Rev.
,
41
(
1
), pp.
15
20
.
3.
Takao
,
Y.
,
Taya
,
M.
, and
Chou
,
T. W.
,
1981
, “
Stress Field Due to a Cylindrical Inclusion With Constant Axial Eigenstrain in an Infinite Elastic Body
,”
ASME J. Appl. Mech.
,
48
, pp.
853
858
.
4.
Hasegawa
,
H.
,
Lee
,
V. G.
, and
Mura
,
T.
,
1992
, “
The Stress Fields Caused by a Circular Cylindrical Inclusion
,”
ASME J. Appl. Mech.
,
59, Part 2
, pp.
s107–s114
s107–s114
.
5.
Hasegawa
,
H.
,
Lee
,
V. G.
, and
Mura
,
T.
,
1993
, “
Hollow Circular Cylindrical Inclusion at the Surface of a Half-Space
,”
ASME J. Appl. Mech.
,
60
, pp.
33
40
.
6.
Wu
,
L. Z.
, and
Du
,
S. Y.
,
1995
, “
The Elastic Field Caused by a Circular Cylindrical Inclusion—Part I
,”
ASME J. Appl. Mech.
,
62
, pp.
579
584
.
7.
Wu
,
L. Z.
, and
Du
,
S. Y.
,
1995
, “
The Elastic Field Caused by a Circular Cylindrical Inclusion—Part II
,”
ASME J. Appl. Mech.
,
62
, pp.
585
589
.
8.
Wu
,
L. Z.
, and
Du
,
S. Y.
,
1996
, “
The Elastic Field in a Half-Space With a Circular Cylindrical Inclusion
,”
ASME J. Appl. Mech.
,
63
, pp.
925
932
.
9.
Hasegawa
,
H.
, and
Yoshiie
,
K.
,
1996
, “
Tension of Elastic Solid With Elastic Circular-Cylindrical Inclusion
,”
JSME Int. J., Ser. A
,
39
(
2
), pp.
186
191
.
10.
Hasegawa
,
H.
, and
Ariyoshi
,
S.
,
1996
, “
Fundamental Solution for Axisymmetric Problems of Transversely Isotropic Elastic Solid,” (in Japanese
),
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
62
(
596
), pp.
1059
1063
.
11.
Eubanks
,
R. A.
, and
Sternberg
,
E.
,
1954
, “
On the Axisymmetric Problem of Elasticity Theory for Medium With Transverse Isotropy
,”
J. Ration. Mech. Anal.
,
3
(
1
), pp.
89
101
.
12.
Ishida
,
R.
,
1987
, “
Crack Problem in a Transversely Isotropic Medium With a Penny-Shaped Crack Under Transient Thermal Loading
,”
Z. Angew. Math. Mech.
,
67
(
2
), pp.
93
99
.
13.
Erdelyi, A., 1954, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York.
14.
Eason
,
G.
,
Noble
,
B.
, and
Sneddon
,
I. N.
,
1955
, “
On Certain Integrals of Lipschitz-Hankel Type Involving Products of Bessel Functions
,”
Philos. Trans. R. Soc. London, Ser. A
,
247
(
A935
), pp.
529
551
.
15.
Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd Ed., Springer-Verlag, New York.
16.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44, pp.
587
590
.
You do not currently have access to this content.