A McKibben actuator consists of an internally pressurized elastic cylindrical tube covered by a shell braided with two families of inextensible fibers woven at equal and opposite angles to the longitudinal axis. Increasing internal pressure causes the actuator to expand radially and, due to the fiber constraint, contract longitudinally. This contraction provides a large force that can be used for robotic actuation. Based on large deformation membrane theory, the actuator is modeled as a fiber-reinforced cylinder with applied inner pressure and axial load. Given the initial shape, material parameters, axial load, and pressure, the analytical model predicts the deformed actuator shape, fiber angle, and fiber and membrane stresses. The analytical results show that for a long and thin actuator the deformed fiber angle approaches 54°44 at infinite pressure. The actuator elongates and contracts for actuators with initial angles above and below 54°44 degrees, respectively. For short and thick actuators with initial angles relatively close to 0 deg or 90 deg, however, a fiber angle boundary layer extends to the middle of the actuator, limiting possible extension or contraction. The calculated longitudinal strain and radius change match experimental results to within 5%.

1.
Klute, G., Czerniecki, J., and Hannaford, B., 1999, “McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence,” IEEE International Conference on Advanced Intelligent Mechatronics, Sept. 19–22, Atlanta, GA, IEEE, Piscataway, NJ, pp. 1–5.
2.
Tondu
,
B.
, and
Lopez
,
P.
, 2000, “Modeling and Control of McKibben Artificial Muscle Robot Actuators,” IEEE Control Syst. Mag., Apr., pp. 15–38.
3.
Repperger, D., Phillips, C., Johnson, D., Harmon, R., and Johnson, K., 1997, “A Study of Pneumatic Muscle Technology for Possible Assistance in Mobility,” IEEE 19th International Conference, Oct. 30–Nov. 2, Chicago, IL, IEEE, Piscataway, NJ, pp. 1884–1887.
4.
Reppberger, D., and Phillips, C., 2000, “Developing Intelligent Control From a Biological Perspective to Examine Paradigms for Activation Utilizing Pneumatic Muscle Actuators,” IEEE International Symposium on Intelligent Control, July 17–19, Pio, Patras, Greece, IEEE, Piscataway, NJ, pp. 205–209.
5.
Caldwell
,
D.
,
Medrano-Cerda
,
G.
, and
Goodwin
,
M.
, 1995, “Control of Pneumatic Muscle Actuators,” IEEE Control Syst. Mag., Feb., pp. 40–48.
6.
Van Leeuwan
,
J. L.
, and
Kier
,
W. M.
,
1997
, “
Functional Design of Tentacles in Squid: Linking Sarcomere Ultrastructure to Gross Morphological Dynamics
,”
Philos. Trans. R. Soc. London, Ser. B
,
264
, pp.
1
21
.
7.
Clark
,
R. B.
, and
Cowey
,
J. B.
,
1958
, “
Factors Controlling the Change of Shape of Some Worms
,”
J. Exp. Biol.
,
35
, pp.
731
748
.
8.
Kier
,
W. M.
,
and
Smith, K. K., 1985, “
Tongues, Tentacles and Trunks: The Biomechanics of Movement in Muscular-Hydrostats
,”
Zool. J. Linnean Soc.
,
83
, pp.
307
324
.
9.
Spencer, A. J. M., 1972, Deformation of Fibre-Reinforced Materials, Clarendon Press, Oxford, UK.
10.
McCurley
,
R. S.
, and
Kier
,
W. M.
,
1995
, “
The Functional Morphology of Starfish Tube Feet: The Role of a Crossed-Fiber Helical Array in Movement
,”
Biol. Bull.
,
188, Apr.
, pp.
197
209
.
11.
Chou
,
Ching-Ping
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
12.
Adkins
,
J. E.
, and
Rivlin
,
R. S.
,
1952
, “
Large Elastic Deformations of Isotropic Materials IX
,”
Philos. Trans. R. Soc. London, Ser. A
,
244
, p.
505
505
.
13.
Green, A. E., and Adkins, J. E., 1960, Large Elastic Deformations, The Clarendon Press, Oxford, UK.
14.
McDonald, P. H., 1995, Continuum Mechanics, PWS Publishing, Boston, MA.
15.
Kydoniefs
,
A. D.
, and
Spencer
,
A. J. M.
,
1969
, “
Finite Axisymmetric Deformations of an Initially Cylindrical Elastic Membrane
,”
Q. J. Mech. Appl. Math.
,
22
, pp.
87
95
.
16.
Yang
,
W. H.
, and
Feng
,
W. W.
,
1970
, “
On Axisymmetrical Deformation of Non-linear Membranes
,”
ASME J. Appl. Mech.
,
37
, pp.
1002
1011
.
17.
Matsikoudi-Iliopoulou
,
M.
, and
Lianis
,
G.
,
1982
, “
Non Linear Elastic Axisymmetric Deformation of Membranes With Torsion
,”
Acta Mech.
,
42
, pp.
153
170
.
18.
Kydoniefs
,
A. D.
,
1970
, “
Finite Axisymmetric Deformations of an Initially Cylindrical Membrane Reinforced With Inextensible Cords
,”
Q. J. Mech. Appl. Math.
,
23
, pp.
481
488
.
19.
Kydoniefs
,
A. D.
,
1970
, “
Finite Axisymmetric Deformations of Initially Cylindrical Reinforced Membranes
,”
Rubber Chem. Technol.
,
43
, pp.
1677
1683
.
20.
Matsikoudi-Iliopoulou
,
M.
,
1987
, “
Finite Axisymmetric Deformations With Torsion of an Initially Cylindrical Membrane Reinforced With One Family Inextensible Cords
,”
Int. J. Eng. Sci.
,
25
(
6
), pp.
673
680
.
21.
Kydoniefs
,
A. D.
,
1977
, “
Deformations of Corded Membranes With Applications to Tire Mechanics
,”
Lett. Appl. Eng. Sci.
,
5
(
1
), pp.
63
83
.
You do not currently have access to this content.