In conventional analyses of composite laminates, the assumption of perfect bonding of adjoining layers is well accepted, although this is an oversimplification of the reality. It is possible that the bond strength may be less than that of the laminae. Thus, the study of weak bonding is an interesting focus area. In this study, an elastic bonding model based on three-dimensional theory of elasticity in a layerwise framework is used to study composite laminates. The differential quadrature (DQ) discretization is used to analyze the layerwise model. The present model enables the simulation of actual bonding stress states in laminated structures. The interfacial characteristics of transverse stress continuity as well as the kinematic continuity conditions are satisfied through the inclusion of the elastic bonding layer. The present model is employed to investigate the free vibration of thick rectangular cross-ply laminates of different boundary conditions and lamination schemes.

1.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, FL.
2.
Reddy
,
J. N.
,
1987
, “
A Generalization of Two-Dimensional Theories of Laminated Composite Plates
,”
Commun. Appl. Numer. Methods
,
3
, pp.
173
180
.
3.
Reddy
,
J. N.
,
1989
, “
On the Generalization of Displacement-Based Laminate Theories
,”
Appl. Mech. Rev.
,
42
, pp.
213
222
.
4.
Soldatos
,
K. P.
, and
Watson
,
P.
,
1997
, “
Accurate Stress Analysis of Laminated Plates Combining a Two-Dimensional Theory With the Exact Three-Dimensional Solution for Simply Supported Edges
,”
Math. Mech. Solids
,
2
, pp.
459
489
.
5.
Soldatos
,
K. P.
, and
Watson
,
P.
,
1997
, “
A General Four-Edges-of-Freedom Theory Suitable for the Acourate Stress Analysis of Homogeneous and Laminated Composites Beam
,”
Int. J. Solids Struct.
,
34
, pp.
2857
2885
.
6.
Soldatos
,
K. P.
, and
Liu
,
S. L.
,
2001
, “
On the Generalized Plane Strain Deformations of Thick Anisotropic Composite Laminated Plates
,”
Int. J. Solids Struct.
,
38
, pp.
479
482
.
7.
Messina
,
A.
, and
Soldatos
,
K. P.
,
2002
, “
A General Vibration Model of Angle-Ply Laminated Plates That Accounts for the Continuity of Interlaminar Stresses
,”
Int. J. Solids Struct.
,
39
, pp.
617
635
.
8.
Srinivas
,
S.
, and
Rao
,
A. K.
,
1970
, “
Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
,
6
, pp.
1463
1481
.
9.
Savoia
,
M.
, and
Reddy
,
J. N.
,
1992
, “
A Variational Approach to Three-Dimensional Elasticity Solutions of Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
59
, Part 2, pp.
S166–S175
S166–S175
.
10.
Teo
,
T. M.
, and
Liew
,
K. M.
,
2001
, “
Three-Dimensional Elasticity Solutions to Some Orthotropic Plate Problems
,”
Int. J. Solids Struct.
,
36
, pp.
5301
5326
.
11.
Lu
,
X.
, and
Liu
,
D.
,
1992
, “
Interlayer Shear Slip Theory for Cross-Ply Laminates With Nonrigid Interfaces
,”
AIAA J.
,
30
, pp.
1063
1073
.
12.
Newmark, N. M., Seiss, C. P., and Viest, I. M., 1951, “Tests and Analysis of Composite Beams With Incomplete Interaction,” Proceedings of Society for Experimental Stress Analysis, Brookfield Center, Brookfield, CT, Vol. 9, pp. 73–79.
13.
Toledano
,
A.
, and
Murakami
,
H.
,
1988
, “
Shear-Deformable Two-Layer Plate Theory With Interlayer Slip
,”
J. Eng. Mech.
,
114
, pp.
605
623
.
14.
Rao
,
K. M.
, and
Ghosh
,
B. G.
,
1980
, “
Imperfectly Bonded Unsymmetric Laminated Beam
,”
J. Eng. Mech.
,
106
, pp.
685
697
.
15.
Fazio
,
P.
,
Hussein
,
R.
, and
Ha
,
K. H.
,
1982
, “
Beam-Columns With Interlayer Slips
,”
J. Eng. Mech.
,
108
, pp.
354
366
.
16.
Liu
,
D.
,
Xu
,
L.
, and
Lu
,
X.
,
1994
, “
Stress Analysis of Imperfect Composite Laminates With an Interlaminar Bonding Theory
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
2819
2839
.
17.
Soldatos
,
K. P.
, and
Shu
,
X. P.
,
2001
, “
Modelling of Perfectly and Weakly Bonded Laminated Plates and Shallow Shells
,”
Comp. Sci. Tech.
,
61
, pp.
247
260
.
18.
Willians
,
T. O.
, and
Addessio
,
F. L.
,
1997
, “
A General Theory for Laminated Plates With Delaminations
,”
Int. J. Solids Struct.
,
34
, pp.
2003
2024
.
19.
Williams
,
T. O.
,
1999
, “
A Generalized Multilength Scale Nonlinear Composite Plate Theory With Delamination
,”
Int. J. Solids Struct.
,
36
, pp.
3015
3050
.
20.
Shu
,
X. P.
, and
Soldatos
,
K. P.
,
2001
, “
An Accurate Delamination Model for Weakly Bonded Laminates Subjected to Different Sets of Edge Boundary Conditions
,”
Int. J. Mech. Sci.
,
43
, pp.
935
959
.
21.
Liew
,
K. M.
,
Zhang
,
J. Z.
,
Ng
,
T. Y.
, and
Meguid
,
S. A.
,
2003
, “
Three-Dimensional Modelling of Elastic Bonding in Composite Laminates Using Layerwise Differential Quadrature
,”
Int. J. Solids Struct.
,
40
, pp.
1745
1764
.
22.
Bellman, R. E., 1973, Methods of Nonlinear Analysis, Academic Press, San Diego, CA.
23.
Liew
,
K. M.
,
Ng
,
T. Y.
, and
Zhang
,
J. Z.
,
2002
, “
Differential Quadrature-Layerwise Modeling Technique for Three-Dimensional Analysis of Cross-Ply Laminated Plates of Various Edge Supports
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
3811
3832
.
24.
Bert
,
C. W.
,
Jang
,
S. K.
, and
Striz
,
A. G.
,
1988
, “
Two New Approximate Methods for Analyzing Free Vibration of Structural Components
,”
AIAA J.
,
26
, pp.
612
618
.
25.
Jang
,
S. K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1989
, “
Application of Differential Quadrature to Static Analysis of Structural Components
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
561
577
.
26.
Farsa
,
J.
,
Kukreti
,
A. R.
, and
Bert
,
C. W.
,
1993
, “
Fundamental Frequency Analysis of Laminated Rectangular Plates by the Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
2341
2356
.
27.
Han
,
J. B.
, and
Liew
,
K. M.
,
1995
, “
Numerical Differential Quadrature Method for Reissner/Mindlin Plates on Two-Parameter Foundations
,”
Int. J. Mech. Sci.
,
39
, pp.
977
990
.
28.
Liu
,
F.-L.
, and
Liew
,
K. M.
,
1997
, “
Static Analysis of Mindlin Plates by Differential Quadrature Element Method
,”
ASME J. Appl. Mech.
,
65
, pp.
705
710
.
29.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
Appl. Mech. Rev.
,
49
, pp.
1
28
.
30.
Bhimaraddi
,
A.
, and
Stevens
,
L. K.
,
1984
, “
A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
195
198
.
31.
Khdeir
,
A. A.
,
1989
, “
Free Vibration and Buckling of Unsymmetric Cross-Ply Laminated Plates Using a Refined Theory
,”
J. Sound Vib.
,
128
, pp.
377
395
.
32.
Reddy
,
J. N.
, and
Khdeir
,
A. A.
,
1989
, “
Buckling and Vibration of Laminated Composite Plates Using Various Plate Theories
,”
AIAA J.
,
27
, pp.
1808
1817
.
33.
Khdeir
,
A. A.
,
1988
, “
Free Vibration and Buckling of Symmetric Cross-Ply Laminated Plates by an Exact Method
,”
J. Sound Vib.
,
126
, pp.
447
461
.
34.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Plates
,”
ASME J. Fluids Eng.
,
51
, pp.
745
752
.
You do not currently have access to this content.