Rolls of films and paper are routinely stored under varying conditions before being unwound into downstream operations. During storage, interlayer pressures can change relative to the pressures generated during winding. These changes can lead to problems such as film/paper blocking (increased interlayer pressure) and roll shifting/cinching (decreased interlayer pressure). To study the storage effect, a nonlinear wound roll stress model including air entrainment is first developed and applied to predict the in-roll stresses during film/paper winding. Thereafter, a thermal stress model is used to study the temperature effect on wound roll stresses. Key inputs to the models are the stack modulus, contact clearance, and air film reference clearance. A method is developed to measure these key model inputs. Results of a parametric study show that among the processing conditions, storage temperature and thermal expansion coefficients of the core and the film/paper are key factors that affect in-roll stresses during storage. Limitations of the models will also be discussed along with recommendations for future modeling development.
Modeling Air Entrainment and Temperature Effects in Winding
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, October 15, 2002; final revision, June 4, 2003. Associate Editor: R. C. Benson. Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of Mechanical and Environmental Engineering University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Lei, H., Cole , K. A., and Weinstein, S. J. (January 5, 2004). "Modeling Air Entrainment and Temperature Effects in Winding ." ASME. J. Appl. Mech. November 2003; 70(6): 902–914. https://doi.org/10.1115/1.1629758
Download citation file: