Shell-like structures are viewed as fully three-dimensional solid bodies that allow the imposition of restrictions on the transverse variation of displacement vector components in certain regions. An important practical problem is to select a simplified mathematical model for a particular application so that the simplifications do not affect the data of interest significantly. This involves application of expert knowledge aided by virtual and∕or physical experimentation. An example is presented.
Issue Section:
Technical Papers
1.
Corum
, J. M.
, Bolt
, S. E.
, Greenstreet
, W. L.
, and Gwaltney
, R. C.
, 1972, “Theoretical and Experimental Stress Analysis of ORNL Thin-Shell Cylinder-to-Cylinder Model No. 1
,” Tech. Report ORNL 4553, Oak Ridge National Laboratory, Oct.2.
Gwaltney
, R. C.
, Corum
, J. M.
, Bolt
, S. E.
, and Bryson
, J. W.
, 1976, “Experimental Stress Analysis of Cylinder-to-Cylinder Shell Models and Comparisons With Theoretical Predictions
,” ASME J. Pressure Vessel Technol.
0094-9930, 98
, pp. 283
–289
.3.
Muntges
, D.
, 2004, “Validation of Working Models for Thin Cylindrical Shells
,” M.S. thesis, Washington University, The Henry Edwin Sever Graduate School, St. Louis.4.
Oberkampf
, W.
, 2001, “What are Validation Experiments
?” Exp. Tech.
0732-8818, pp. 35
–40
.5.
Actis
, R.
, Szabó
, B.
, and Schwab
, C.
, 1999, “Hierarchic Models for Laminated Plates and Shells
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 172
, pp. 79
–107
.6.
Babuška
, I.
, Szabó
, B. A.
, and Actis
, R. L.
, 1992, “Hierarchic Models for Laminated Composites
,” Int. J. Numer. Methods Eng.
0029-5981, 33
, pp. 503
–535
.7.
Naghdi
, P. M.
, 1972, “The Theory of Shells and Plates
,” Encyclopedia of Physics
, S.
Flügge
, ed. Springer-Verlag
, Berlin, pp. 425
–640
.8.
Novozhilov
, V. V.
, 1964, Thin Shell Theory
, 2nd Edition, Noordhoff
, Groningen.9.
Szabó
, B.
, and Babuška
, I.
, 1991, Finite Element Analysis
, Wiley
, New York.10.
Rank
, E.
, Düster
, A.
, Nübel
, V.
, Preusch
, K.
, and Bruhns
, O. T.
, 2005, “High Order Finite Elements for Shells
,” Comput. Methods Appl. Mech. Eng.
0045-7825 194
, pp. 2494
–2512
.11.
Szabó
, B.
, and Actis
, R.
, 2005, “On the Importance and Uses of Feedback Information in FEA
,” Appl. Numer. Math.
0168-9274, 52
, pp. 219
–234
.12.
Szabó
, B.
, Düster
, A.
, and Rank
, E.
, 2004, “The p -Version of the Finite Element Method
,” Encyclopedia of Computational Mechanics
, E.
Stein
, R.
de Borst
, and T. J. R.
Hughes
, eds., Wiley
, Chichester, Vol. 1
, Chap. 5.13.
Babuška
, I.
, and Strouboulis
, T.
, 2001, The Finite Element Method and its Reliability
, Oxford University Press
, Oxford.14.
Clough
, R. W.
, and Tocher
, J. L.
, 1966, “Finite Element Stiffness Matrices for Analysis of Plate Bending
,” Proc. of Conference on Matrix Methods in Structural Mechanics
, Report AFFDL-TR-66-80, Wright-Patterson Air Force Base, OH, pp. 515
–545
.15.
Greste
, O.
, 1970, “Finite Element Analysis of Tubular K Joints
,” Tech. Report UCSESM 70-11, University of California at Berkeley
.16.
Pitkäranta
, J.
, 2003, “Mathematical and Historical Reflections on the Lowest Order Finite Element Models for Thin Structures
,” Comput. Struct.
0045-7949, 81
, pp. 895
–121
.17.
Ciarlet
, P. G.
, 1978, The Finite Element Method for Elliptic Problems
, North-Holland
, Amsterdam.18.
Királyfalvi
, G.
, and Szabó
, B. A.
, 1997, “Quasi-Regional Mapping for the p -Version of the Finite Element Method
,” Finite Elem. Anal. Design
0168-874X, 27
, pp. 85
–97
.19.
Düster
, A.
, Bröker
, H.
, and Rank
, E.
, 2001, “The p -Version of the Finite Element Method for Three-Dimensional Curved Thin Walled Structures
,” Int. J. Numer. Methods Eng.
0029-5981, 52
, pp. 673
–703
.20.
Geymonat
, G.
, and Sanchez-Palencia
, E.
, 1995, “On the Rigidity of Certain Surfaces With Folds and Applications to Shell Theory
,” Arch. Ration. Mech. Anal.
0003-9527, 129
, pp. 11
–45
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.