This paper presents a novel asymptotic framework to obtain detailed solutions describing the propagation of hydraulic fractures in an elastic material. The problem consists of a system of nonlinear integro-differential equations and a free boundary problem. This combination of local and nonlocal effects leads to transitions on a small scale near the crack tip, which control the behavior across the whole fracture profile. These transitions depend upon the dominant physical process(es) and are identified by simultaneously scaling the associated parameters with the distance from the tip. A smooth analytic solution incorporating several physical processes in the crucial tip region can be constructed using this new framework. In order to clarify the exposition of the new methodology, this paper is confined to considering the impermeable case in which only the two physical processes of viscous dissipation and structure energy release compete.

1.
Lister
,
J. R.
, 1990, “
Buoyancy-Driven Fluid Fracture: Similarity Solutions for the Horizontal and Vertical Propagation of Fluid-Filled Cracks
,”
J. Fluid Mech.
0022-1120,
217
, pp.
213
239
.
2.
Lister
,
J. R.
, 1990, “
Buoyancy-Driven Fluid Fracture: The Effects of Material Toughness and of Low-Viscosity Precursors
,”
J. Fluid Mech.
0022-1120,
210
, pp.
263
280
.
3.
Spence
,
D. A.
, and
Turcotte
,
D. L.
, 1985, “
Magma-Driven Propagation of Cracks
,”
J. Geophys. Res.
0148-0227,
90
, pp.
575
580
.
4.
Van As
,
A.
, and
Jeffrey
,
R. G.
, 2000, “
Caving induced by Hydraulic Fracturing at Northparkes Mines
,” in
Proc. 4th North American Rock Mechanics Symp.
,
J. E. A.
Girard
, ed., pp.
353
360
.
5.
Abé
,
H.
,
Mura
,
T.
, and
Keer
,
L. M.
, 1976, “
Growth Rate of a Penny-Shaped Crack in Hydraulic Fracturing of Rocks
,”
J. Geophys. Res.
0148-0227,
81
, pp.
5335
5340
.
6.
Barenblatt
,
G.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
7.
Crittendon
,
B. C.
, 1959, “
The Mechanics of Design and Interpretation of Hydraulic Fracture Treatments
,”
J. Pet. Technol.
0022-3522,
11
(
10
), pp.
21
29
.
8.
Geertsma
,
J.
, and
de Klerk
,
F.
, 1969, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
0022-3522,
246
, pp.
1571
1581
.
9.
Harrison
,
E.
,
Kieschnick
,
W. F.
, and
McGuire
,
W. J.
, 1954, “
The Mechanics of Fracture Induction and Extension
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
201
, pp.
252
263
.
10.
Howard
,
G. C.
, and
Fast
,
C. R.
, 1957, “
Optimum Fluid Characteristics for Fracture Extension
,”
Drill. & Prod. Prac.
,
24
, pp.
261
270
.
11.
Hubbert
,
M. K.
, and
Willis
,
D. G.
, 1957, “
Mechanics of Hydraulic Fracturing
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
210
, pp.
153
166
.
12.
Khristianovic
,
S.
, and
Zheltov
,
Y.
, 1955, “
Formation of Vertical Fractures by Means of Highly Viscous Fluids
,” in
Proc., 4th World Petroleum Congress
, pp.
579
586
.
13.
Nordgren
,
R.
, 1972, “
Propagation of Vertical Hydraulic Fractures
,”
SPEJ
0037-9999,
12
, pp.
306
314
.
14.
Perkins
,
T. K.
, and
Kern
,
L. R.
, 1961, “
Widths of Hydraulic Fractures
,”
J. Pet. Technol.
0022-3522,
222
, pp.
937
949
.
15.
Detournay
,
E.
, and
Garagash
,
D. I.
, 2004, “
General Scaling Laws for Fluid-Driven Fractures
,” Preprint.
16.
Spence
,
D. A.
, and
Sharp
,
P.
, 1985, “
Self-Similar Solutions for Elastohydro Dynamic Cavity Flow
,”
Proc. R. Soc. London, Ser. A
1364-5021,
400
, pp.
289
313
.
17.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A. H.-D.
, 1994, “
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
1364-5021,
447
, pp.
39
48
.
18.
Lenoach
,
B.
, 1995, “
The Crack Tip Solution for Hydraulic Fracturing in a Permeable Solid
,”
J. Mech. Phys. Solids
0022-5096,
43
(
7
), pp.
1025
1043
.
19.
Detournay
,
E.
, and
Garagash
,
D. I.
, 2003, “
The Near-Tip Region of a Fluid-Driven Fracture Propagating in a Permeable Elastic Solid
,”
J. Fluid Mech.
0022-1120,
494
, pp.
1
32
.
20.
Detournay
,
E.
,
Adachi
,
J. I.
, and
Garagash
,
D. I.
, 2002, “
Asymptotic and Intermediate Asymptotic Behavior Near the Tip of a Fluid-Driven Fracture Propagating in a Permeable Elastic Medium
,” in
Structural Integrity and Fracture
,
Dyskin
,
Hu
, and
Sahouryeh
, eds.,
Swets and Zeitlinger
,
Lisse
.
21.
Garagash
,
D.
, and
Detournay
,
E.
, 2000, “
The Tip Region of a Fluid-Driven Fracture Propagating in an Elastic Medium
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
183
192
.
22.
Detournay
,
E.
, 2004, “
Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks
,”
Int. J. Geomech.
1532-3641,
4
, pp.
1
11
.
23.
Adachi
,
J. I.
, and
Detournay
,
E.
, 2002, “
Self-Similar Solution of a Plane-Strain Fracture Driven by a Power-Law Fluid
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
26
, pp.
579
604
.
24.
Carbonell
,
R. S.
,
Desroches
,
J.
, and
Detournay
,
E.
, 1999, “
A Comparison Between a Semi-Analytical and a Numerical Solution of a Two-Dimensional Hydraulic Fracture
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
4869
4888
.
25.
Savitski
,
A. A.
, and
Detournay
,
E.
, 2002, “
Propagation of a Penny-Shaped Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
6311
6337
.
26.
Garagash
,
D. I.
, and
Detournay
,
E.
, 2005, “
Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
916
928
.
27.
Adachi
,
J. I.
, and
Detournay
,
E.
, 2005, “
Plane-Strain Propagation of a Fluid-Driven Fracture: Finite Toughness Self-Similar Solution
,” (in preparation).
28.
Garagash
,
D. I.
, 2005, “
Plane-Strain Propagation of a Hydraulic Fracture During Injection and Shut-In: Asymptotics of Large Toughness
,”
Eng. Fract. Mech.
0013-7944,
73
(
4
), pp.
456
481
.
29.
Adachi
,
J. I.
, and
Detournay
,
E.
, 2006, “
Propagation of a Fluid-Driven Fracture in a Permeable Medium
,”
Int. J. Fract.
0376-9429 (submitted).
30.
Garagash
,
D. I.
, 2000, “
Hydraulic Fracture Propagation in Elastic Rock with Large Toughness
,” in
Proc. 4th North American Rock Mechanics Symp.
,
J.
Girard
,
M.
Liebman
,
C.
Breeds
, and
D. T
, eds., pp.
221
228
.
31.
Adachi
,
J. I.
, 2001, “
Fluid-Driven Fracture in Permeable Rock
,” PhD. thesis, University of Minnesota, Department of Civil Engineering (available at www.umi.comwww.umi.com), December.
32.
Mitchell
,
S. L.
,
Kuske
,
R.
, and
Peirce
,
A. P.
, 2005, “
An Asymptotic Frame-work for Finite Hydraulic Fractures Including Leak-Off
,” to
SIAM J. Appl. Math.
(under review).
33.
Mitchell
,
S. L.
,
Kuske
,
R.
,
Peirce
,
A. P.
, and
Adachi
,
J. I.
, 2005, “
An Asymptotic Analysis of a Finger-Like Fluid-Driven Fracture
,” (in preparation).
34.
Griffith
,
A. A.
, 1921, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
163
198
.
35.
Martin
,
P. A.
, 1991, “
End-Point Behavior of Solutions to Hypersingular Integral Equations
,”
Proc. R. Soc. London, Ser. A
1364-5021,
432
, pp.
301
320
.
36.
Garagash
,
D. I.
, 2005, “
Propagation of a Plane-Strain Hydraulic Fracture With a Fluid Lag: Early Time Solution
,”
Int. J. Solids Struct.
0020-7683 (in press).
37.
Lecampion
,
B.
, and
Detournay
,
E.
, 2006, “
An Implicit Algorithm for the Propagation of a Hydraulic Fracture With a Fluid Lag
,”
Computer Methods in Applied Mechanics and Engineering
(submitted).
You do not currently have access to this content.