A generalized stochastic buckling analysis of laminated composite plates, with and without centrally located circular cutouts having random material properties, is presented under uniaxial compressive loading. In this analysis, the layerwise plate model is used to solve both prebuckling and buckling problems. The stochastic analysis is done based on mean centered first-order perturbation technique. The mean buckling strength of composite plates is validated with results available in the literature. It has been observed that the present analysis can predict buckling load accurately even for plates with large cutouts. Micromechanics based approach is used to study the effect of variation in microlevel constituents on the effective macrolevel properties like elastic moduli. Consequently, the effect of uncertainty in these material properties on the buckling strength of the laminated plates is studied. Parametric studies are carried out to see the effect of hole size, layups, and boundary conditions on the mean and variance of plate buckling strength.

1.
Lin
,
S. C.
, and
Kam
,
T. Y.
, 2000, “
Probabilistic Failure Analysis of Transversely Loaded Laminated Composite Plates Using First Order Second Moment Method
,”
J. Eng. Mech.
0733-9399,
126
(
8
), pp.
812
820
.
2.
Babuska
,
I.
,
Andersson
,
B.
,
Smith
,
P. J.
, and
Levin
,
K.
, 1999, “
Damage Analysis of Fiber Composites; Part I: Statistical Analysis on Fiber Scale
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
172
, pp.
27
77
.
3.
Kaminski
,
M.
, and
Kleiber
,
M.
, 2000, “
Perturbation Based Stochastic Finite Element Method for Homogenization of Two-Phase Elastic Composites
,”
Comput. Struct.
0045-7949,
78
, pp.
811
826
.
4.
Chamis
,
C. C.
, 2004, “
Probabilistic Simulation of Multi-Scale Composite Behavior
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
(
1–3
), pp.
51
61
.
5.
Buryachenko
,
B. A.
,
Pagano
,
N. J.
,
Kim
,
R. Y.
, and
Spowart
,
J. E.
, 2003, “
Quantitative Description and Numerical Simulation of Random Microstructures of Composites and their Effective Elastic Moduli
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
47
72
.
6.
Kleiber
,
M.
, and
Hien
,
T. D.
, 1992,
The Stochastic Finite Element Method
,
Wiley
, New York.
7.
Liu
,
W. M.
,
Belytchko
,
T.
, and
Mani
,
A.
, 1986, “
Probabilistic Finite Elements for Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
, pp.
61
81
.
8.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Element: A Spectral Approach
,
Springer
, New York.
9.
Cruz
,
M. E.
, and
Patera
,
A. T.
, 1995, “
A Parallel Monte Carlo Finite Element Procedure for the Analysis of Multicomponent Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
1087
1121
.
10.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
, 1998, “
Monte Carlo Techniques in Computational Stochastic Mechanics
,”
Arch. Comput. Methods Eng.
1134-3060,
5
(
1
), pp.
3
30
.
11.
Yettram
,
A. L.
, and
Brown
,
C. J.
, 1986, “
The Elastic Stability of Square Perforated Plates Under Biaxial Loadings
,”
Comput. Struct.
0045-7949,
22
(
4
), pp.
589
594
.
12.
Nemeth
,
M. P.
,
Stein
,
M.
, and
Johnson
,
E. R.
, 1986, “
An Approximate Buckling Analysis for Rectangular Orthotropic Plates With Centrally Located Cutouts
,” NASA Technical Paper No.-2528, NASA, Washington, D.C.
13.
Nemeth
,
M. P.
, 1986, “
Importance of Anisotropy on Buckling of Compression Loaded Symmetric Composite Plates
,”
AIAA J.
0001-1452,
24
, pp.
1831
1835
.
14.
Larsson
,
P. L.
, 1987, “
On Buckling of Orthotropic Compressed Plates With Circular Holes
,”
Compos. Struct.
0263-8223,
7
, pp.
103
121
.
15.
Lin
,
C. C.
, and
Kuo
,
C. S.
, 1989, “
Buckling of Laminated Plates With Holes
,”
J. Compos. Mater.
0021-9983,
23
, pp.
536
553
.
16.
Srivasta
,
K. S.
, and
Krishnamurthy
,
A. V.
, 1992, “
Stability of Laminated Composite Plates With Cut-Outs
,”
Comput. Struct.
0045-7949,
43
(
2
), pp.
273
279
.
17.
Sabir
,
A. B.
, and
Chow
,
F. Y.
, 1986, “
Elastic Buckling of Plates Containing Eccentrically Located Circular Holes
,”
Thin-Walled Struct.
0263-8231,
4
(
2
), pp.
135
150
.
18.
Shakerley
,
T. M.
, and
Brown
,
C. J.
, 1996, “
Elastic Buckling of Plates With Eccentrically Positioned Rectangular Perforations
,”
Int. J. Mech. Sci.
0020-7403,
38
(
8–9
), pp.
825
838
.
19.
Noor
,
A. K.
, and
Kim
,
Y. H.
, 1996, “
Buckling and Postbuckling of Composite Panels With Cutouts Subjected to Combined Edge Shear and Temperature Change
,”
Comput. Struct.
0045-7949,
60
(
2
), pp.
203
222
.
20.
Bailey
,
R.
, and
Wood
,
J.
, 1997, “
Postbuckling Behaviour of Square Compression Loaded Graphite Epoxy Panels With Square and Elliptical Cutouts
,”
Thin-Walled Struct.
0263-8231,
28
(
3–4
), pp.
373
397
.
21.
Nemeth
,
M. P.
, 1988, “
Buckling Behavior of Compression Loaded Symmetrically Laminated Angle-Ply Plates With Holes
,”
AIAA J.
0001-1452,
26
(
3
), pp.
330
336
.
22.
Zhang
,
J.
, and
Ellingwood
,
B.
, 1995, “
Effects of Uncertain Material Properties on Structural Stability
,”
J. Struct. Eng.
0733-9445,
121
(
4
), pp.
705
716
.
23.
Lin
,
S. C.
, 2000, “
Buckling Failure Analysis of Random Composite Laminates Subjected to Random Loads
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7563
7576
.
24.
Singh
,
B. N.
,
Yadav
,
D.
, and
Iyengar
,
N. G. R.
, 2001, “
Initial Buckling of Composite Cylindrical Panels With Random Material Properties
,”
Compos. Struct.
0263-8223,
53
, pp.
55
64
.
25.
Elishakoff
,
I.
, 2000, “
Uncertain Buckling: Its Past, Present and Future
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
6869
6889
.
26.
Grigoriu
,
M.
, 2000, “
Stochastic Mechanics
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
197
214
.
27.
Argyris
,
J.
,
Papadrakakis
,
M.
, and
Stefanou
,
G.
, 2002, “
Stochastic Finite Element Analysis of Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4781
4804
.
28.
Stefanou
,
G.
, and
Papadrakakis
,
M.
, 2004, “
Stochastic Finite Element Analysis of Shell With Combined Random Material and Geometric Properties
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
139
160
.
29.
Christensen
,
R. M.
, 1979,
Mechanics of Composite Materials
,
Krieger
, Malabar, FL.
30.
Ahmad
,
N. U.
, and
Basu
,
P. K.
, 1994, “
Higher-Order Finite Element Modeling of Laminated Composite Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
123
139
.
31.
Actis
,
R. L.
,
Szabo
,
B. A.
, and
Schwab
,
C.
, 1999, “
Hierarchic Models for Laminated Plates and Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
172
, pp.
79
107
.
32.
Jones
,
R. M.
, 1975,
Mechanics of Composite Materials
,
Scripta Book Company
, Washington, DC.
33.
Reddy
,
J. N.
, and
Khedir
,
A. A.
, 1989, “
Buckling and Vibration of Laminated Composite Plates Using Various Plate Theories
,”
AIAA J.
0001-1452,
27
(
12
), pp.
1808
1817
.
You do not currently have access to this content.