Abstract

Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the normality structure stems from the microscale irrotational thermodynamic fluxes. Within the extended normality structure, this paper focuses on the microscale thermodynamic mechanisms and significance of the convexity of flow potentials and yield surfaces. It is shown that the flow potential is convex if the conjugate force increment cannot not oppose the increment of the rates of local internal variables. For the Rice fluxes, the convexity condition reduces to the local rates being monotonic increasing functions with respect to their conjugate forces. The convexity of the flow potential provides the thermodynamic system a capability against the disturbance of the thermodynamic equilibrium point. It is proposed for time-independent behavior that the set of plastically admissible stresses determined by yield conditions corresponds to the set of thermodynamic equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the thermodynamic counterpart of the principle of maximum plastic dissipation and requires the convexity of the yield surfaces.

References

1.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes—I
,”
Phys. Rev.
0031-899X,
37
, pp.
405
406
.
2.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes—II
,”
Phys. Rev.
0031-899X,
38
, pp.
2265
2279
.
3.
De Groot
,
S. R.
, and
Mazur
,
P.
, 1962,
Non-Equilibrium Thermodynamics
,
North-Holland
,
Amsterdam
.
4.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Integral Variable Theory and its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
5.
Rice
,
J. R.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
Argon
,
A. S
, ed.,
MIT Press
,
Cambridge, MA
, pp.
23
79
.
6.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
7.
Edelen
,
D. G. B.
, 1972, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
481
490
.
8.
Yang
,
Q.
,
Tham
,
L. G.
, and
Swoboda
,
G.
, 2005, “
Normality Structures With Homogeneous Kinetic Rate Laws
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
322
329
.
9.
Edelen
,
D. G. B.
, 1973, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
819
839
.
10.
Collins
,
I. F.
, and
Kelly
,
P. A.
, 2002, “
A Thermomechanical Analysis of a Family of Soil Models
,”
Géotechnique
0016-8505,
52
, pp.
507
518
.
11.
Collins
,
I. F.
, 2005, “
Elastic∕plastic Models for Soils and Sands
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
493
508
.
12.
Houlsby
,
G. T.
, and
Puzrin
,
A. M.
, 2000, “
A Thermomechanical Framework for Constitutive Models for Rate-Independent Dissipative Materials
,”
Int. J. Plast.
0749-6419,
16
, pp.
1017
1047
.
13.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 2004, “
On Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
631
651
.
14.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Thermodynamic Relationship Between Creep Crack Growth and Creep Deformation
,”
J. Non-Equil. Thermodyn.
0304-0204,
30
, pp.
81
94
.
15.
Brown
,
L. M.
, 1997, “
Transition From Laminar to Rotational Motion in Plasticity
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
355
, pp.
1979
1990
.
16.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2006, “
Multiscale Thermodynamic Significance of the Scale Invariance Approach in Continuum Inelasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
125
132
.
17.
Maugin
,
G. A.
, 1999,
The Thermodynamics of Nonlinear Irreversible Behaviors
,
World Scientific
,
Singapore
.
18.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
.
19.
Lubliner
,
H.
, 1990,
Plasticity Theory
,
Macmillan
,
New York
.
20.
Drucker
,
D. C.
, 1959, “
A Definition of Stable Inelastic Material
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
101
106
.
You do not currently have access to this content.