Background. Many papers on the elastic stability of both thin-walled and massive (three-dimensional) bodies regard the bifurcation of equilibrium in the case of compressive loads. Although, the elastic instability may also occur under tensile stresses. Method of Approach. In the present paper on the basis of three-dimensional equations of the nonlinear elasticity the instability of a stretched infinite hollow cylinder under torsion and inflation is investigated. The bifurcational method of stability analysis is used. Results. The critical surfaces and stability region in the space of loading parameters are defined for a Biderman material and special model of incompressible medium, which possess essential material nonlinearity. The influence of a wall thickness on the instability of a hollow cylinder is analyzed. Conclusions. Based on the obtained results, a simple and efficient practical criterion of stability under tension is formulated. This criterion can be represented in the form of the Drucker postulate, given in terms of external loads.

1.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
NY
.
2.
Volmir
,
A. S.
, 1967,
Stability of Deformable Systems
,
Nauka
,
Moscow
.
3.
Tvergaard
,
V.
, 1976, “
Buckling Behavior of Plate and Shell Structure
,” in
Proceedings of the 14th IUTAM Congress
,
North-Holland, Amsterdam
, pp.
233
247
.
4.
Budiansky
,
B.
, and
Hutchinson
,
J. W.
, 1979, “
Buckling: Progress and Challenge
,”
Trends in Solid Mechanics
,
J. F.
Besseling
and
A. M. A.
Van der Heijden
, eds.,
University Press
,
Delft
.
5.
Steigmann
,
D. J.
, 1990, “
Tension-Field Theory
,”
Proc. R. Soc. London, Ser. A
1364-5021,
429
, pp.
141
173
.
6.
Haughton
,
D. M.
, 2001, “
Elastic Membranes
,”
Nonlinear Elasticity: Theory and Applications
,
Y. B.
Fu
and
R. W.
Ogden
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
233
267
.
7.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1960,
Large Deformations and Non-Linear Continuum Mechanics
,
Oxford University Press
,
Oxford
.
8.
Sensenig
,
C. B.
, 1964, “
Instability of Thick Elastic Solids
,”
Commun. Pure Appl. Math.
0010-3640,
17
(
4
), pp.
451
491
.
9.
Biot
,
M. A.
, 1965,
Mechanics of Incremental Deformations
,
Wiley
,
New York
.
10.
Knops
,
R. J.
, and
Wilkes
,
E. W.
, 1973,
Theory of Elastic Stability
,
Springer
,
Berlin
.
11.
Wesolowski
,
Z.
, 1974,
Dynamic Problems of Non-Linear Theory of Elasticity
,
Panstwowe Wydawnictwo Naukowe
,
Warsaw
.
12.
Lurye
,
A. I.
, 1980,
The Non-Linear Theory of Elasticity
,
Nauka
,
Moscow
.
13.
Zubov
,
L. M.
, 1997,
Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies
,
Springer-Verlag
,
Berlin
.
14.
Fu
,
Y. B.
, and
Ogden
,
R. W.
, 1999, “
Nonlinear Stability Analysis of Pre-Stressed Elastic Bodies
,”
Continuum Mech. Thermodyn.
0935-1175,
11
, pp.
141
172
.
15.
Guz
,
A. N.
, 1999,
Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies
,
Springer Verlag
,
Berlin
.
16.
Beatty
,
M. F.
, 1987, “
Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues-with Examples
,”
Appl. Mech. Rev.
0003-6900,
40
, pp.
1699
1734
.
17.
Spector
,
S. J.
, 1984, “
On the Absence of Bifurcation for Elastic Bars in Uniaxial Tension
,”
Arch. Ration. Mech. Anal.
0003-9527,
85
(
2
), pp.
171
199
.
18.
Zubov
,
L. M.
, and
Rudev
,
A. N.
, 1996, “
The Instability of a Stretched Non-Linearly Elastic Beam
,”
Prikl. Mat. Mekh.
0032-8235,
60
(
5
), pp.
786
798
.
19.
Lastenko
,
M. S.
, and
Zubov
,
L. M.
, 2002, “
A Model of Neck Formation on a Rod under Tension
,”
Revista Colombiana de Matematicas
,
36
(
1
), pp.
49
57
.
20.
Zubov
,
L. M.
, and
Sheidakov
,
D. N.
, 2005, “
The Effect of Torsion on the Stability of an Elastic Cylinder under Tension
,”
Prikl. Mat. Mekh.
0032-8235,
69
(
1
), pp.
53
60
.
21.
Haughton
,
D. M.
, and
Ogden
,
R. W.
, 1979, “
Bifurcation of Inflated Circular Cylinders of Elastic Material under Axial Loading. I. Membrane Theory for Thin-Walled Tubes
,”
J. Mech. Phys. Solids
0022-5096,
27
(
3
), pp.
179
212
.
22.
Haughton
,
D. M.
, and
Ogden
,
R. W.
, 1979, “
Bifurcation of Inflated Circular Cylinders of Elastic Material under Axial Loading. II. Exact Theory for Thick-Walled Tubes
,”
J. Mech. Phys. Solids
0022-5096,
27
(
5–6
), pp.
489
512
.
23.
Chen
,
Y. C.
, and
Haughton
,
D. M.
, 2003, “
Stability and Bifurcation of Inflation of Elastic Cylinders
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
137
156
.
24.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Mineola
,
Dover
.
25.
Antman
,
S. S.
, 1995,
Nonlinear Problems of Elasticity
,
Springer
,
New York
.
26.
Oden
,
J. T.
, 1972,
Finite Elements of Nonlinear Continua
,
McGraw-Hill
,
New York
.
27.
Zubov
,
L. M.
, 1971, “
Variational Principles of the Non-Linear Theory of Elasticity. The Case of the Superposition of a Small Deformation on a Finite One
,”
Prikl. Mat. Mekh.
0032-8235,
35
(
5
), pp.
848
852
.
28.
Zubov
,
L. M.
, and
Moiseyenko
,
S. I.
, 1981, “
The Buckling of an Elastic Cylinder under Torsion and Compression
,”
Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela
,
5
, pp.
78
84
.
29.
Biderman
,
V. L.
, 1958, “
Problems of Rubber Articles Analysis
,”
Strength Analysis
,
Mashgiz
,
Moscow
, Vol.
3
, pp.
40
87
.
30.
Zubov
,
L. M.
, and
Rudev
,
A. N.
, 1994, “
Indications That Hadamard’s Condition is Satisfied for Highly Elastic Materials
,”
Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela
,
6
, pp.
21
31
.
31.
Zubov
,
L. M.
, and
Rudev
,
A. N.
, 1993, “
Features of the Loss of Stability for a Non-Linearly Elastic Rectangular Beam
,”
Prikl. Mat. Mekh.
0032-8235,
57
(
3
), pp.
65
83
.
32.
Algin
,
V. A.
, and
Zubov
,
L. M.
, 2000, “
The Stability of an Elastic Ring Made of Physically Non-Linear Material
,”
Izv. Vuzov. Severo-Kavkaz. Region. Estest. nauki
,
2
, pp.
14
16
.
33.
Kachanov
,
L. M.
, 1974,
Principles of Fracture Mechanics
,
Nauka
,
Moscow
.
You do not currently have access to this content.