This paper provides a simple, novel approach for synchronizing the motions of multiple “slave” nonlinear mechanical systems by actively controlling them so that they follow the motion of an independent “master” mechanical system. The multiple slave systems need not be identical to one another. The method is inspired by recent results in analytical dynamics, and it leads to the determination of the set of control forces to create such synchronization between highly nonlinear dynamical systems. No linearizations or approximations are involved, and the exact control forces needed to synchronize the nonlinear systems are obtained in closed form. The method is applied to the synchronization of multiple, yet different, chaotic gyroscopes that are required to replicate the motion of a master gyro, which may have a chaotic or a regular motion. The efficacy of the method and its simplicity in synchronizing these mechanical systems are illustrated by two numerical examples, the first dealing with a system of three different gyros, the second with five different ones.

1.
Tong
,
X.
, and
Mrad
,
N.
, 2001, “
Chaotic Motion of a Symmetric Gyro Subjected to Harmonic Base Excitation
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
681
684
.
2.
Ge
,
Z.-M.
, and
Chen
,
H.-H.
, 1996, “
Bifurcation and Chaos in Rate Gyro With Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
194
(
1
), pp.
107
117
.
3.
Ge
,
Z.-M.
,
Chen
,
H.-K.
, and
Chen
,
H.-H.
, 1996, “
The Regular and Chaotic Motions of a Symmetric Heavy Gyroscope With Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
198
(
2
), pp.
131
147
.
4.
Chen
,
H.-K.
, 2002, “
Chaos and Chaos Synchronization of a Symmetric Gyro With Linear-Plus-Cubic Damping
,”
J. Sound Vib.
0022-460X,
255
(
4
), pp.
719
740
.
5.
Van Dooren
,
R.
, 2003, “
Comments on Chaos and Chaos Synchronization of a Symmetric Gyro With Linear-Plus-Cubic Damping
,”
J. Sound Vib.
0022-460X,
268
, pp.
632
634
.
6.
Leipnik
,
R. B.
, and
Newton
,
T. A.
, 1981, “
Double Strange Attractors in Rigid Body Motion With Linear Feedback Control
,”
Phys. Lett.
0375-9601,
86A
, pp.
63
67
.
7.
Pecora
,
L.-M.
, and
Carroll
,
T. L.
, 1990, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
821
824
.
8.
Lakshmanan
,
M.
, and
Murali
,
K.
, 1996,
Chaos in Nonlinear Oscillators: Controlling Synchronization
,
World Scientific
,
Singapore
.
9.
Strogatz
,
S.
, 2000,
Nonlinear Dynamics and Chaos
,
Westview
,
Cambridge, MA
.
10.
Lei
,
Y.
,
Xu
,
W.
, and
Zheng
,
H.
, 2005, “
Synchronization of Two Chaotic Nonlinear Gyros Using Active Control
,”
Phys. Lett. A
0375-9601,
343
, pp.
153
158
.
11.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1996, “
Analytical Dynamics: A New Approach
,”
Cambridge University Press
,
Cambridge, England
.
12.
Hramov
,
A.
, and
Koronovskii
,
A.
, 2005, “
Generalized Synchronization: A Modified System Approach
,”
Phys. Rev. E
1063-651X,
71
(
6
), P.
067201
.
13.
Boccaletti
S.
,
Kruths
,
J.
,
Osipov
,
G.
,
Valladares
,
D.
, and
Zhou
,
C.
, 2002, “
The Synchronization of Chaotic Systems
,”
Phys. Rep.
0370-1573,
336
, pp.
1
101
.
14.
Pars
,
L. A.
, 1972,
A Treatise on Analytical Dynamics
,
Oxbow
,
Woodbridge, CT
.
15.
Udwadia
,
F. E.
, 2003, “
A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
1783
1800
.
16.
Franklin
,
J.
, 1995, “
Least-Squares Solution of Equations of Motion Under Inconsistent Constraints
,”
Linear Algebr. Appl.
0024-3795,
222
, pp.
9
13
.
17.
Udwadia
,
F. E.
, and
von Bremen
,
H.
, 2001, “
An Efficient and Stable Approach for Computation of Lyapunov Characteristic Exponents of Continuous Dynamical Systems
,
Appl. Math. Comput.
0096-3003,
121
, pp.
219
259
.
18.
Udwadia
,
F. E.
, 2000, “
Fundamental Principles of Lagrangian Dynamics: Mechanical Systems With Non-Ideal, Holonomic, and Non-Holonomic Constraints
,”
J. Math. Anal. Appl.
0022-247X,
252
, pp.
341
355
.
19.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1997, “
An Alternative Proof of the Greville Formula
,”
J. Optim. Theory Appl.
0022-3239,
94
(
1
), pp.
23
28
.
20.
Utkin
,
V.
, 1992,
Sliding Modes in Control Optimization
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.