In this paper, Taylor’s floating air-backed plate (ABP) model is extended to the case of a submerged water-backed plate (WBP) within the acoustic range. The solution of the WBP is cast into the same format as that of the ABP with a modified fluid-structure interaction (FSI) parameter, which allows a unified analysis of the ABP and WBP using the same set of formulas. The influence of back conditions on fluid and structural dynamics, including fluid cavitation, is systematically investigated. Asymptotic limits are mathematically identified and physically interpolated. Results show that the WBP experiences lower equivalent pressure loading, reduced structural response, and hence lower peak momentum gaining. The time to reach peak momentum is shorter for the WBP than for the ABP. Cavitation is found to be almost inevitable for the ABP, while relevant to the WBP only for a small range of the FSI parameter. Implications to shock response of submerged structures are briefly discussed.

1.
Taylor
,
G. I.
, 1941, “
The Pressure and Impulse of Submarine Explosion Waves on Plates
,”
Scientific Papers of G. I. Taylor III
,
Cambridge University Press
,
Cambridge, UK
, pp.
287
303
.
2.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
, 2004, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
386
401
.
3.
Rabczuk
,
T.
,
Kim
,
J. Y.
,
Samaniego
,
E.
, and
Belytschko
,
T.
, 2004, “
Homogenization of Sandwich Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1009
1027
.
4.
Rabczuk
,
T.
,
Samaniego
,
E.
, and
Belytschko
,
T.
, 2007, “
Simplified Model for Predicting Impulsive Loads on Submerged Structures to Account for Fluid-Structure Interaction
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
163
177
.
5.
Qiu
,
X.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2004, “
Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
637
645
.
6.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2005, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2347
2383
.
7.
Deshpande
,
V. S.
,
Heaver
,
A.
, and
Fleck
,
N. A.
, 2006, “
An Underwater Shock Simulator
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
, pp.
1021
1041
.
8.
Xue
,
Z.
, and
Hutchinson
,
J. W.
, 2004, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
1283
1305
.
9.
Espinosa
,
H. D.
,
Lee
,
S.
, and
Moldovan
,
N.
, 2006, “
A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading
,”
Exp. Mech.
0014-4851,
46
, pp.
805
824
.
10.
Wadley
,
H. N. G.
, 2006, “
Multifunctional Periodic Cellular Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021,
364
, pp.
31
68
.
11.
Liang
,
Y.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2007, “
The Response of Mettalic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
81
99
.
12.
Xie
,
W.
,
Liu
,
Z.
,
Young
,
Y. L.
, and
Liu
,
T.
, “
Modeling of Interactions Between Cavitating Flows and Elastic Structures
,”
Int. J. Numer. Methods Eng.
0029-5981 submitted.
13.
Hutchinson
,
J. W.
, and
Xue
,
Z.
, 2005, “
Metal Sandwich Plates Optimized for Pressure Impulses
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
545
569
.
14.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2006, “
Nonlinear Compressibility Effects in Fluid-Structure Interaction and Their Implications on the Air-Blast Loading of Structures
,”
J. Appl. Phys.
0021-8979,
100
, pp.
063519
.
15.
Kambouchev
,
N.
, and
Radovitzky
,
R.
, 2007, “
Fluid-Structure Interaction Effects in the Dynamic Response of Free-Standing Plates to Uniform Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1042
1045
.
16.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2007, “
Numerical Simulation of the Fluid-Structure Interaction Between Air Blast Waves and Free-Standing Plates
,”
Comput. Struct.
0045-7949,
85
, pp.
923
931
.
17.
Tan
,
P. J.
,
Reid
,
S. R.
, and
Harrigan
,
J. J.
, 2005, “
Discussion: The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
978
979
.
18.
Vaziri
,
V.
, and
Hutchinson
,
J. W.
, 2004, “
Metal Sandwich Plates Subject to Intense Air Shocks
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
2021
2035
.
19.
Schechter
,
R. S.
, and
Bort
,
R. L.
, 1981, “
The Response of Two Fluid-Coupled Plates to an Incident Pressure Pulse
,”
Naval Research Laboratory
, Technical Report No. 4647.
20.
Mindlin
,
R. D.
, and
Bleich
,
H. H.
, 1953, “
Response of an Elastic Cylindrical Shell to a Transverse Step Shock Wave
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
189
195
.
21.
Haywood
,
J. H.
, 1958, “
Response of an Elastic Cylindrical Shell to a Pressure Pulse
,”
Q. J. Mech. Appl. Math.
0033-5614,
11
, pp.
129
141
.
22.
Huang
,
H.
, 1969, “
Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell
,”
J. Acoust. Soc. Am.
0001-4966,
45
, pp.
661
670
.
23.
Huang
,
H.
, 1970, “
An Exact Analysis of the Transient Interaction of Acoustic Plane Waves With a Cylindrical Elastic Shell
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
1091
1099
.
24.
Huang
,
H.
, 1979, “
Transient Response of Two Fluid-Coupled Spherical Elastic Shells to an Incident Pressure Pulse
,”
J. Acoust. Soc. Am.
0001-4966,
65
, pp.
881
887
.
25.
Zhang
,
P.
, and
Geers
,
T.
, 1993, “
Excitation of a Fluid-Filled, Submerged Spherical Shell by a Transient Acoustic Wave
,”
J. Acoust. Soc. Am.
0001-4966,
93
, pp.
696
705
.
26.
Jones-Oliveira
,
J.
, 1996, “
Transient Analytic and Numerical Results for the Fluid-Solid Interaction of Prolate Spheroidal Shells
,”
J. Acoust. Soc. Am.
0001-4966,
99
, pp.
392
407
.
You do not currently have access to this content.