A theoretical analysis of the effects of a magnetic field on the dynamics of a thin nonuniform conducting film of an incompressible viscous fluid on a rotating disk has been considered. A nonlinear evolution equation describing the shape of the film interface has been derived as a function of space and time and has been solved numerically. The temporal evolution of the free surface of the fluid and the rate of retention of the liquid film on the spinning disk have been obtained for different values of Hartmann number M, evaporative mass flux parameter E, and Reynolds number Re. The results show that the relative volume of the fluid retained on the spinning disk is enhanced by the presence of the magnetic field. The stability characteristics of the evolution equation have been examined using linear theory. For both zero and nonzero values of the nondimensional parameter describing the magnetic field, the results show that (a) the infinitesimal disturbances decay for small wave numbers and are transiently stable for larger wave numbers when there is either no mass transfer or there is evaporation from the film surface, and although the magnitude of the disturbance amplitude is larger when the magnetic field is present, it decays to zero earlier than for the case when the magnetic field is absent, and (b) when absorption is present at the film surface, the film exhibits three different domains of stability: disturbances of small wave numbers decay, disturbances of intermediate wave numbers grow transiently, and those of large wave numbers grow exponentially. The range of stable wave numbers increases with increase in Hartmann number.

1.
Emslie
,
A. G.
,
Bonner
,
F. D.
, and
Peck
,
L. G.
, 1958, “
Flow of a Viscous Liquid on a Rotating Disk
,”
J. Appl. Phys.
0021-8979,
29
, pp.
858
862
.
2.
Higgins
,
B. G.
, 1986, “
Film Flow on a Rotating Disk
,”
Phys. Fluids
,
29
, pp.
3522
3529
. 1070-6631
3.
Rehg
,
T.
, and
Higgins
,
B. G.
, 1988, “
The Effect of Inertia and Interfacial Shear on Film Flow Over a Rotating Disc
,”
Phys. Fluids
,
31
, pp.
1360
1371
. 1070-6631
4.
Wang
,
C. Y.
,
Watson
,
L. T.
, and
Alexander
,
K. A.
, 1991, “
Spinning of a Liquid Film From an Accelerating Disk
,”
IMA J. Appl. Math.
,
46
, pp.
201
210
. 0272-4960
5.
Stillwagon
,
L. E.
, and
Larson
,
R. G.
, 1990, “
Levelling of Thin Film Over Uneven Substrates During Spin Coating
,”
Phys. Fluids A
0899-8213,
2
, pp.
1937
1944
.
6.
Kitamura
,
A.
, 2000, “
Asymptotic Solution for Film Flow on a Rotating Disk
,”
Phys. Fluids
1070-6631,
12
, pp.
2141
2144
.
7.
Moriarty
,
J. A.
,
Schwartz
,
L. W.
, and
Tuck
,
E. O.
, 1991, “
Unsteady Spreading of Thin Liquid Films With Small Surface Tension
,”
Phys. Fluids A
0899-8213,
3
, pp.
733
742
.
8.
McKinley
,
I. S.
,
Wilson
,
S. K.
, and
Duffy
,
B. R.
, 1999, “
Spin Coating and Air-Jet Blowing of Thin Viscous Drops
,”
Phys. Fluids
1070-6631,
11
, pp.
30
47
.
9.
Melo
,
F.
,
Joanny
,
J. F.
, and
Fauve
,
S.
, 1989, “
Fingering Instability of Spinning Drops
,”
Phys. Rev. Lett.
0031-9007,
63
, pp.
1958
1961
.
10.
Sisoev
,
G. M.
,
Matar
,
O. K.
, and
Lawrence
,
C. J.
, 2003, “
Axisymmetric Wave Regimes in Viscous Liquid Film Flow Over a Spinning Disk
,”
J. Fluid Mech.
0022-1120,
495
, pp.
385
411
.
11.
Wu
,
L.
, 2005, “
Surface Wave Propagation of Thin Liquid Films on a Rotating and Non-Rotating Disk
,”
Phys. Rev. E
1063-651X,
72
, pp.
016313
.
12.
Reisfeld
,
B.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1991, “
The Dynamics and Stability of Thin Liquid Films During Spin Coating: I. Films With Constant Rates of Evaporation or Absorption
,”
J. Appl. Phys.
0021-8979,
70
, pp.
5258
5266
.
13.
Espig
,
H.
, and
Hoyle
,
R.
, 1965, “
Waves in a Thin Liquid Layer on a Rotating Disk
,”
J. Fluid Mech.
0022-1120,
22
, pp.
671
677
.
14.
Charwat
,
A. F.
,
Kelly
,
R. E.
, and
Gazley
,
C.
, 1972, “
The Flow and Stability of Thin Liquid Films on a Rotating Disk
,”
J. Fluid Mech.
0022-1120,
53
, pp.
227
255
.
15.
Matsumoto
,
S.
,
Saito
,
K.
, and
Takashima
,
Y.
, 1974, “
The Thickness of a Viscous Liquid Film on a Rotating Disk
,”
J. Chem. Eng. Jpn.
,
6
, pp.
503
506
. 0021-9592
16.
Miyasaka
,
Y.
, 1974, “
On the Flow of a Viscous Free Boundary Jet on a Rotating Disk, II. Comparison of Experimental Results With Calculated Values by Means of Film Thickness
,”
Bull. JSME
,
17
, pp.
1469
1475
. 0021-3764
17.
Butuzov
,
A. I.
, and
Puhovoi
,
I. I.
, 1976, “
On Regimes of Liquid Film Flows Over a Rotating Surface
,”
J. Eng. Phys.
,
31
, pp.
217
224
. 0022-0841
18.
Rifert
,
V. G.
,
Barabash
,
P. A.
, and
Muzhilko
,
A. A.
, 1982, “
Stochastic Analysis of Wave Surface Structure of Liquid Film Flowing Under Centrifugal Forces
,”
Izv. Vyssh. Uchebn. Zaved., Energetika
,
8
, pp.
62
66
.
19.
Thomas
,
S.
,
Faghri
,
A.
, and
Hankey
,
W.
, 1991, “
Experimental Analysis and Flow Visualization of a Thin Liquid Film on a Stationary and Rotating Disk
,”
ASME Trans. J. Fluids Eng.
0098-2202,
113
, pp.
73
80
.
20.
Woods
,
W. P.
, 1995, “
The Hydrodynamics of Thin Liquid Films Flowing Over a Rotating Disc
,” Ph.D. thesis, University of Newcastle upon Tyne, UK.
21.
Leneweit
,
G.
,
Roesner
,
K. G.
, and
Koehler
,
R.
, 1999, “
Surface Instabilities of Thin Liquid Film Flow on a Rotating Disk
,”
Exp. Fluids
0723-4864,
26
, pp.
75
85
.
22.
Shkadov
,
V. Ya.
, 1973, “
Some Methods and Problems of the Theory of Hydrodynamic Stability
,”
Scientific Proceedings 25
,
Institute of Mechanics of Lomonosov, Moscow State University
,
Moscow
.
23.
Rauscher
,
J. W.
,
Kelly
,
R. E.
, and
Cole
,
J. D.
, 1973, “
An Asymptotic Solution for the Laminar Flow of Thin Film on a Rotating Disk
,”
ASME J. Appl. Mech.
,
40
, pp.
43
47
. 0021-8936
24.
Dorfman
,
L. A.
, 1967, “
Flow and Heat Transfer in a Viscous Liquid Layer on a Spinning Disc
,”
J. Eng. Phys.
,
12
, pp.
309
316
. 0022-0841
25.
Miyasaka
,
Y.
, 1974, “
On the Flow of a Viscous Free Boundary Jet on a Rotating Disk, I. Theoretical Analysis
,”
Bull. JSME
,
17
, pp.
1461
1468
. 0021-3764
26.
Sisoev
,
G. M.
,
Taĺdrik
,
A. F.
, and
Shkadov
,
V. Ya.
, 1986, “
Flow of a Viscous Liquid Film on the Surface of a Rotating Disc
,”
J. Eng. Phys.
0022-0841,
51
, pp.
1171
1174
.
27.
Sisoev
,
G. M.
, and
Shkadov
,
V. Ya.
, 1990, “
Helical Waves in a Liquid Film on a Rotating Disc
,”
J. Eng. Phys.
,
58
, pp.
573
577
. 0022-0841
28.
Needham
,
D. J.
, and
Merkin
,
J. H.
, 1987, “
The Development of Nonlinear Waves on the Surface of a Horizontally Rotating Thin Liquid Film
,”
J. Fluid Mech.
0022-1120,
184
, pp.
357
379
.
29.
Dandapat
,
B. S.
, and
Ray
,
P. C.
, 1990, “
Film Cooling on a Rotating Disk
,”
Int. J. Non-Linear Mech.
0020-7462,
25
, pp.
569
582
.
30.
Usha
,
R.
, and
Ravindran
,
R.
, 2004, “
Analysis of Cooling of a Conducting Fluid Film of Non-Uniform Thickness on a Rotating Disk
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
153
164
.
31.
Rehg
,
T. J.
, 1992, “
Spin Coating of Monodisperse Colloidal Suspensions: Evidence of Evaporative Convection
,” Ph.D. thesis, University of California, Davis.
32.
Usha
,
R.
,
Ravindran
,
R.
, and
Uma
,
B.
, 2005, “
Dynamics and Stability of a Thin Liquid Film on a Heated Rotating Disk—Film With Variable Viscosity
,”
Phys. Fluids
1070-6631,
17
, p.
102103
.
33.
Wu
,
L.
, 2006, “
Spin Coating of Thin Liquid Films on an Axisymmetrically Heated Disk
,”
Phys. Fluids
1070-6631,
18
, pp.
063602
.
34.
Ddandapat
,
B. S.
, and
Ray
,
P. C.
, 1993, “
Flow of a Thin Liquid Film Over a Cold/Hot Rotating Disk
,”
Int. J. Non-Linear Mech.
0020-7462,
28
, pp.
489
501
.
35.
Strong
,
L.
, and
Middleman
,
S.
, 1989, “
Lubricant Retention on a Spinning Disk
,”
AIChE J.
0001-1541,
35
, pp.
1753
1756
.
36.
Ray
,
P. C.
, and
Dandapat
,
B. S.
, 1994, “
Flow of Thin Liquid Film on a Rotating Disc in the Presence of a Transverse Magnetic Field
,”
Q. J. Mech. Appl. Math.
,
47
, pp.
297
304
. 0033-5614
37.
Dandapat
,
B. S.
, and
Ray
,
P. C.
, 1998, “
Effect of Thermocapillarity on the Production of Conducting Thin Film in the Presence of a Transverse Magnetic Field
,”
Z. Angew. Math. Mech.
0044-2267,
78
, pp.
635
640
.
38.
Dandapat
,
B. S.
, and
Layek
,
G. C.
, 1999, “
Spin Coating in the Presence of a Transverse Magnetic Field and Non-Uniform Rotation: A Numerical Study
,”
J. Phys. D
0022-3727,
32
, pp.
2483
2491
.
39.
Usha
,
R.
, and
Götz
,
T.
, 2001, “
Spinning of a Liquid Film Flow on a Rotating Disk in the Presence of a Magnetic Field—A Numerical Solution
,”
Acta Mech.
,
30
, pp.
1
15
. 0001-5970
40.
Usha
,
R.
, and
Uma
,
B.
, 2001, “
Flow of a Thin Liquid Film Over a Rough Rotating Disk in the Presence of Transverse Magnetic Field
,”
Z. Angew. Math. Phys.
,
52
, pp.
793
809
. 0044-2275
41.
Usha
,
R.
, and
Uma
,
B.
, 2002, “
The Role of Induced Air Shear on the Development of a Conducting Fluid Film Over a Rough Spinning Disk in the Presence of a Transverse Magnetic Field
,”
Z. Angew. Math. Mech.
0044-2267,
82
, pp.
211
216
.
42.
Sparrow
,
E. M.
, and
Cess
,
R. D.
, 1962, “
Magnetohydrodynamic Flow and Heat Transfer About a Rotating Disk
,”
J. Appl. Mech.
0021-8936,
29
, pp.
181
187
.
43.
Neuringer
,
J. L.
, and
McIlroy
,
W.
, 1958, “
Incompressible Two-Dimensional Stagnation-Point Flow of an Electrically Conducting Viscous Fluid in the Presence of a Magnetic Field
,”
J. Aeronaut. Sci.
,
25
, pp.
194
198
. 0095-9812
44.
Rossow
,
V. J.
, 1958, “
Magnetohydrodynamic Analysis of Heat Transfer Near a Stagnation Point
,”
J. Aeronaut. Sci.
,
25
, pp.
234
235
. 0095-9812
45.
Rathbun
,
A. S.
, 1961, “
On the Flow of an Electrically Conducting Fluid Toward a Stagnation Point in the Presence of a Magnetic Field
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh.
46.
Kumari
,
M.
, and
Nath
,
G.
, 2004, “
Unsteady MHD Film Flow Over a Rotating Infinite Disk
,”
Int. J. Eng. Sci.
,
42
, pp.
1099
1117
. 0020-7225
47.
Meyerhofer
,
D.
, 1998, “
Characteristics of Resist Films Produced by Spinning
,”
J. Appl. Phys.
,
47
, pp.
3993
3997
. 0021-8979
48.
Benney
,
D. J.
, 1966, “
Long Waves on Liquid Film
,”
J. Math. Phys.
,
45
, pp.
150
155
. 0022-2488
49.
Atherton
,
R. W.
, and
Homsy
,
G. M.
, 1976, “
On the Derivation of Evolution Equations for Interfacial Waves
,”
Chem. Eng. Commun.
0098-6445,
2
, pp.
57
77
.
50.
Williams
,
M. B.
, and
Davis
,
S. H.
, 1982, “
Nonlinear Theory of Film Rupture
,”
J. Colloid Interface Sci.
0021-9797,
90
, pp.
220
228
.
51.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1988, “
Nonlinear Stability of Evaporating/Condensing Liquid Films
,”
J. Fluid Mech.
0022-1120,
195
, pp.
463
494
.
52.
Tu
,
Y.
, 1983, “
Depletion and Retention of Fluid on a Rotating Disk
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
625
629
.
53.
Hwang
,
J. H.
, and
Ma
,
F.
, 1989, “
On the Flow of a Thin Liquid Film Over a Rough Rotating Disk
,”
J. Appl. Phys.
0021-8979,
66
, pp.
388
394
.
54.
Kim
,
J. S.
,
Kim
,
S.
, and
Ma
,
F.
, 1991, “
On the Flow of a Thin Liquid Film Over a Rotating Disk
,”
J. Appl. Phys.
0021-8979,
69
, pp.
2593
2601
.
55.
Joo
,
S. W.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1991, “
Long-Wave Instabilities of Heated Falling Films: Two-Dimensional Theory of Uniform Layers
,”
J. Fluid Mech.
0022-1120,
230
, pp.
117
146
.
56.
Davis
,
S. H.
, 1976, “
Stability of Time-Periodic Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
8
, pp.
57
74
.
You do not currently have access to this content.