This paper proposes a new approach for the reduction in the model-order of linear multiple-degree-of-freedom viscoelastic systems via equivalent second-order systems. The assumed viscoelastic forces depend on the past history of motion via convolution integrals over kernel functions. Current methods to solve this type of problem normally use the state-space approach involving additional internal variables. Such approaches often increase the order of the eigenvalue problem to be solved and can become computationally expensive for large systems. Here, an approximate reduced second-order approach is proposed for this type of problems. The proposed approximation utilizes the idea of generalized proportional damping and expressions of approximate eigenvalues of the system. A closed-form expression of the equivalent second-order system has been derived. The new expression is obtained by elementary operations involving the mass, stiffness, and the kernel function matrix only. This enables one to approximately calculate the dynamical response of complex viscoelastic systems using the standard tools for conventional second-order systems. Representative numerical examples are given to verify the accuracy of the derived expressions.

1.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
21
(
5
), pp.
741
748
.
2.
Golla
,
D. F.
, and
Hughes
,
P. C.
, 1985, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
897
906
.
3.
McTavish
,
D. J.
, and
Hughes
,
P. C.
, 1993, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
103
110
.
4.
Lesieutre
,
G. A.
, and
Mingori
,
D. L.
, 1990, “
Finite Element Modeling of Frequency-Dependent Material Properties Using Augmented Thermodynamic Fields
,”
AIAA J.
0001-1452,
13
, pp.
1040
1050
.
5.
Lesieutre
,
G. A.
, and
Bianchini
,
E.
, 1995, “
Time-Domain Modeling of Linear Viscoelasticy Using Anelastic Displacement Fields
,”
ASME J. Vibr. Acoust.
0739-3717,
117
(
4
), pp.
424
430
.
6.
Muravyov
,
A.
, and
Hutton
,
S. G.
, 1997, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
684
691
.
7.
Muravyov
,
A.
, 1998, “
Forced Vibration Responses of a Viscoelastic Structure
,”
J. Sound Vib.
0022-460X,
218
(
5
), pp.
892
907
.
8.
Wagner
,
N.
, and
Adhikari
,
S.
, 2003, “
Symmetric State-Space Formulation for a Class of Non-Viscously Damped Systems
,”
AIAA J.
0001-1452,
41
(
5
), pp.
951
956
.
9.
Adhikari
,
S.
, and
Wagner
,
N.
, 2003, “
Analysis of Asymmetric Non-Viscously Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
70
(
6
), pp.
885
893
.
10.
Adhikari
,
S.
, and
Wagner
,
N.
, 2004, “
Direct Time-Domain Approach for Exponentially Damped Systems
,”
Comput. Struct.
0045-7949,
82
(
29–30
), pp.
2453
2461
.
11.
Muscolino
,
G.
,
Palmeri
,
A.
, and
Ricciardelli
,
F.
, 2005, “
Time-Domain Response of Linear Hysteretic Systems to Deterministic and Random Excitations
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
34
, pp.
1129
1147
.
12.
Palmeri
,
A.
,
Ricciardelli
,
F.
,
Luca
,
A. D.
, and
Muscolino
,
G.
, 2003, “
State Space Formulation for Linear Viscoelastic Dynamic Systems With Memory
,”
J. Eng. Mech.
0733-9399,
129
(
7
), pp.
715
724
.
13.
Palmeri
,
A.
,
Ricciardelli
,
F.
,
Muscolino
,
G.
, and
Luca
,
A. D.
, 2004, “
Random Vibration of Systems With Viscoelastic Memory
,”
J. Eng. Mech.
0733-9399,
130
(
9
), pp.
1052
1061
.
14.
Woodhouse
,
J.
, 1998, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
0022-460X,
215
(
3
), pp.
547
569
.
15.
Adhikari
,
S.
, 1999, “
Modal Analysis of Linear Asymmetric Non-Conservative Systems
,”
J. Eng. Mech.
0733-9399,
125
(
12
), pp.
1372
1379
.
16.
Adhikari
,
S.
, 2002, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
0733-9399,
128
(
3
), pp.
328
339
.
17.
Qian
,
D.
, and
Hansen
,
J. S.
, 1995, “
A Time Domain Substructure Synthesis Method for Viscoelastic Structures
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
407
413
.
18.
Muller
,
P.
, 2005, “
Are the Eigensolutions of a 1-d.o.f. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
0022-460X,
285
(
1–2
), pp.
501
509
.
19.
Adhikari
,
S.
, 2005, “
Qualitative Dynamic Characteristics of a Non-Viscously Damped Oscillator
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
(
2059
), pp.
2269
2288
.
20.
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2001, “
A Numerical Method for Nonlinear Eigenvalue Problems and Application to Vibrations of Viscoelastic Structures
,”
Comput. Struct.
0045-7949,
79
, pp.
533
541
.
21.
Segalman
,
D. J.
, 1987, “
Calculation of Damping Matrices for Linearly Viscoelastic Structures
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
585
588
.
22.
Bilbao
,
A.
,
Aviles
,
R.
,
Agirrebeitia
,
J.
, and
Ajuria
,
G.
, 2006, “
Proportional Damping Approximation for Structures With Added Viscoelastic Dampers
,”
Finite Elem. Anal. Design
0168-874X,
42
(
6
), pp.
492
502
.
23.
Friswell
,
M. I.
,
Inman
,
D. J.
, and
Lam
,
M. J.
, 1997, “
On the Realisation of GHM Models in Viscoelasticity
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
11
), pp.
986
993
.
24.
Friswell
,
M. I.
, and
Inman
,
D. J.
, 1999, “
Reduced-Order Models of Structures With Viscoelastic Components
,”
AIAA J.
0001-1452,
37
(
10
), pp.
1318
1325
.
25.
Adhikari
,
S.
, and
Pascual
,
B.
, 2009, “
Eigensolutions of Linear Viscoelastic Systems
,”
J. Sound Vib.
0022-460X,
325
(
4–5
), pp.
1000
1011
.
26.
Adhikari
,
S.
, 2006, “
Damping Modelling Using Generalized Proportional Damping
,”
J. Sound Vib.
0022-460X,
293
(
1–2
), pp.
156
170
.
27.
Adhikari
,
S.
, and
Phani
,
A.
, 2009, “
Experimental Identification of Generalized Proportional Damping
,”
ASME J. Vibr. Acoust.
0739-3717,
131
(
1
), pp.
011008
-1–011008-
12
.
28.
Caughey
,
T. K.
, and
O’Kelly
,
M. E. J.
, 1965, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
583
588
.
29.
Adhikari
,
S.
, 2001, “
Classical Normal Modes in Non-Viscously Damped Linear Systems
,”
AIAA J.
0001-1452,
39
(
5
), pp.
978
980
.
30.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2003, “
Quantification of Non-Viscous Damping in Discrete Linear Systems
,”
J. Sound Vib.
0022-460X,
260
(
3
), pp.
499
518
.
31.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
32.
Bellman
,
R.
, 1960,
Introduction to Matrix Analysis
,
McGraw-Hill
,
New York
.
33.
Adhikari
,
S.
, 2004, “
Optimal Complex Modes and an Index of Damping Non-Proportionality
,”
Mech. Syst. Signal Process.
0888-3270,
18
(
1
), pp.
1
27
.
34.
Biot
,
M. A.
, 1955, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
0096-8250,
97
(
6
), pp.
1463
1469
.
35.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2001, “
Identification of Damping: Part 2, Non-Viscous Damping
,”
J. Sound Vib.
0022-460X,
243
(
1
), pp.
63
88
.
36.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2001, “
Identification of Damping: Part 1, Viscous Damping
,”
J. Sound Vib.
0022-460X,
243
(
1
), pp.
43
61
.
You do not currently have access to this content.