Buckling and post-buckling analysis is presented for axially compressed double-walled carbon nanotubes (CNTs) embedded in an elastic matrix in thermal environments. The double-walled carbon nanotube is modeled as a nonlocal shear deformable cylindrical shell, which contains small scale effects and van der Waals interaction forces. The surrounding elastic medium is modeled as a tensionless Pasternak foundation. The post-buckling analysis is based on a higher order shear deformation shell theory with the von Kármán–Donnell-type of kinematic nonlinearity. The thermal effects are also included and the material properties are assumed to be temperature-dependent and are obtained from molecular dynamics (MD) simulations. The nonlinear prebuckling deformations of the shell and the initial local point defect, which is simulated as a dimple on the tube wall, are both taken into account. A singular perturbation technique is employed to determine the post-buckling response of the tubes and an iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region between the tube and the elastic medium. The small scale parameter e0a is estimated by matching the buckling loads of CNTs observed from the MD simulation results with the numerical results obtained from the nonlocal shear deformable shell model. Numerical solutions are presented to show the post-buckling behavior of CNTs surrounded by an elastic medium of conventional and tensionless Pasternak foundations. The results show that buckling and post-buckling behavior of CNTs is very sensitive to the small scale parameter e0a. The results reveal that the unilateral constraint has a significant effect on the post-buckling response of CNTs when the foundation stiffness is sufficiently large.

1.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
, 2004, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
1
26
.
2.
Jiang
,
H.
,
Liu
,
B.
,
Huang
,
Y.
, and
Hwang
,
K. C.
, 2004, “
Thermal Expansion of Single Wall Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
265
270
.
3.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instability Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
4.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
1638
1641
.
5.
Zhang
,
W.
,
Suhr
,
J.
, and
Koratkar
,
N. A.
, 2006, “
Observation of High Buckling Stability in Carbon Nanotube Polymer Composites
,”
Adv. Mater.
0935-9648,
18
, pp.
452
456
.
6.
Hadjiev
,
V. G.
,
Lagoudas
,
D. C.
,
Oh
,
E. -S.
,
Thakre
,
P.
,
Davis
,
D.
,
Files
,
B. S.
,
Yowell
,
L.
,
Arepalli
,
S.
,
Bahr
,
J. L.
, and
Tour
,
J. M.
, 2006, “
Buckling Instabilities of Octadecylamine Functionalized Carbon Nanotubes Embedded in Epoxy
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
128
136
.
7.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1265
1279
.
8.
Ranjbartoreh
,
A. R.
,
Ghorbanpour
,
A.
, and
Soltani
,
B.
, 2007, “
Double-Walled Carbon Nanotube With Surrounding Elastic Medium Under Axial Pressure
,”
Physica E (Amsterdam)
1386-9477,
39
, pp.
230
239
.
9.
Yang
,
H. K.
, and
Wang
,
X.
, 2007, “
Torsional Buckling of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium
,”
Compos. Struct.
0263-8223,
77
, pp.
182
192
.
10.
Yang
,
H. K.
, and
Wang
,
X.
, 2006, “
Bending Stability of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
14
, pp.
99
116
.
11.
Zhang
,
Y. Q.
,
Liu
,
G. R.
,
Qiang
,
H. F.
, and
Li
,
G. Y.
, 2006, “
Investigation of Buckling of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium Using the Energy Method
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
53
61
.
12.
Wang
,
X.
,
Lu
,
G.
, and
Lu
,
Y. J.
, 2007, “
Buckling of Embedded Multi-Walled Carbon Nanotubes Under Combined Torsion and Axial Loading
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
336
351
.
13.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Triple-Walled Carbon Nanotubes Embedded in an Elastic Matrix
,”
J. Appl. Phys.
0021-8979,
97
, p.
114318
.
14.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
, 2006, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
2436
2452
.
15.
Girifalco
,
L. A.
, and
Lad
,
R. A.
, 1956, “
Energy of Cohesion, Compressibility, and the Potential Energy Functions of Graphite System
,”
J. Chem. Phys.
0021-9606,
25
, pp.
693
697
.
16.
Girifalco
,
L. A.
, 1991, “
Interaction Potential for C60 Molecules
,”
J. Phys. Chem.
0022-3654,
95
, pp.
5370
5371
.
17.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for van der Waals Interaction
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
303
326
.
18.
Shen
,
H. -S.
, 2004, “
Postbuckling Prediction of Double-Walled Carbon Nanotubes Under Hydrostatic Pressure
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2643
2657
.
19.
Wu
,
J.
,
Hwanga
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
279
292
.
20.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
0021-8979,
54
, pp.
4703
4710
.
21.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Wang
,
J. S.
, 2004, “
Small-Scale Effects on Buckling of Multiwalled Carbon Nanotubes Under Axial Compression
,”
Phys. Rev. B
0163-1829,
70
, p.
205430
.
22.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Han
,
X.
, 2006, “
Effect of Small Length Scale on Elastic Buckling of Multi-Walled Carbon Nanotubes Under Radial Pressure
,”
Phys. Lett. A
0375-9601,
349
, pp.
370
376
.
23.
Zhang
,
Y. Y.
,
Tan
,
V. B. C.
, and
Wang
,
C. M.
, 2006, “
Effect of Chirality on Buckling Behavior of Single-Walled Carbon Nanotube
,”
J. Appl. Phys.
0021-8979,
100
, p.
074304
.
24.
Li
,
R.
, and
Kardomateas
,
G. A.
, 2007, “
Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
399
405
.
25.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Xie
,
X. Y.
, 2005, “
Free Transverse Vibration of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,”
Phys. Rev. B
0163-1829,
71
, p.
195404
.
26.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2007, “
Application of Nonlocal Elastic Shell Theory in Wave Propagation Analysis of Carbon Nanotubes
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
178
190
.
27.
Hu
,
Y. -G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
, 2008, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
3475
3485
.
28.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
29.
Jiang
,
H.
,
Feng
,
X. -Q.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Wu
,
P. D.
, 2004, “
Defect Nucleation in Carbon Nanotubes Under Tension And Torsion: Stone–Wales Transformation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
3419
3429
.
30.
Reddy
,
J. N.
, and
Liu
,
C. F.
, 1985, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
0020-7225,
23
, pp.
319
330
.
31.
Shen
,
H. -S.
, 2001, “
Postbuckling of Shear Deformable Cross-Ply Laminated Cylindrical Shells Under Combined External Pressure and Axial Compression
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2493
2523
.
32.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2003, “
Axially Compressed Buckling of Pressured Multiwall Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3893
3911
.
33.
Shen
,
H. -S.
, and
Zhang
,
C. -L.
, 2006, “
Postbuckling Prediction of Axially Loaded Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects
,”
Phys. Rev. B
0163-1829,
74
, p.
035410
.
34.
Zhou
,
O.
, 1994, “
Defects in Carbon Nanostructures
,”
Science
0036-8075,
263
, pp.
1744
1747
.
35.
Jin
,
Y.
, and
Yuan
,
F. G.
, 2003, “
Simulation of Elastic Properties of Single-Walled Carbon Nanotubes
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1507
1515
.
36.
Elliott
,
J. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Young
,
R. J.
, and
Shaffer
,
M. S. P.
, 2004, “
Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
095501
.
37.
Wang
,
L.
,
Zheng
,
Q.
,
Liu
,
J. Z.
, and
Jinag
,
Q.
, 2005, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
105501
.
38.
Chang
,
T.
,
Geng
,
J.
, and
Guo
,
X.
, 2005, “
Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
251929
.
39.
Zhang
,
C. -L.
, and
Shen
,
H. -S.
, 2006, “
Temperature-Dependent Elastic Properties of Single-Walled Carbon Nanotubes: Prediction From Molecular Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
081904
.
40.
Zhang
,
C. -L.
, and
Shen
,
H. -S.
, 2008, “
Predicting the Elastic Properties of Double-Walled Carbon Nanotubes by Molecular Dynamics Simulation
,”
J. Phys. D
0022-3727,
41
, p.
055404
.
41.
Shen
,
H. -S.
, and
Zhang
,
C. -L.
, 2007, “
Postbuckling of Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects Under Combined Axial and Radial Mechanical Loads
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1461
1487
.
42.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular-Mechanics Simulations
,”
Phys. Rev. B
0163-1829,
69
, p.
235406
.
43.
Wang
,
Q.
, 2005, “
Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
98
, p.
124301
.
44.
Waters
,
J. F.
,
Riester
,
L.
,
Jouzi
,
M.
,
Guduru
,
P. R.
, and
Xu
,
J. M.
, 2004, “
Buckling Instabilities in Multiwalled Carbon Nanotubes Under Uniaxial Compression
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1787
1789
.
45.
Waters
,
J. F.
,
Guduru
,
P. R.
,
Jouzi
,
M.
,
Xu
,
J. M.
,
Hanlon
,
T.
, and
Suresh
,
S.
, 2005, “
Shell Buckling of individual Multiwalled Carbon Nanotubes Using Nanoindentation
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
103109
.
You do not currently have access to this content.