In this paper, a more refined pressure distribution expression is derived to describe the van der Waals (vdW) interaction between any two tubes of a multiwalled carbon nanotube (MWCNT). Based on this new vdW force expression, a continuum cylindrical shell model is established for the buckling and post-buckling analysis of MWCNTs. The buckling and post-buckling responses are simulated for MWCNTs with various sizes to examine the consequences of ignoring the nonlinear term in the Taylor expansion of vdW force function. By comparing the results furnished by the commonly used linear vdW force model and the present nonlinear vdW force model, it is found that the buckling responses before the critical buckling strain are almost the same. Thus, the simple linear vdW force model suffices for the calculation of buckling loads. However, the post-buckling responses simulated from present nonlinear vdW force model are significantly lower than those given by the linear vdW force model. This indicates that the present nonlinear vdW force model must be used when considering the post-buckling responses.

1.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
0163-1829,
59
, pp.
235
245
.
2.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
3.
Zhang
,
P.
,
Jiang
,
H.
,
Huang
,
Y.
,
Geubelle
,
P. H.
, and
Hwang
,
K. C.
, 2004, “
An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
977
998
.
4.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapour Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829,
42
, pp.
9458
9471
.
5.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1941
1977
.
6.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2004, “
Finite Element Methods for the Non-Linear Mechanics of Crystalline Sheets and Nanotubes
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
419
456
.
7.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2003, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
429
442
.
8.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
279
292
.
9.
Sunyk
,
R.
, and
Steinmann
,
P.
, 2003, “
On Higher Gradients in Continuum-Atomistic Modeling
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6877
6896
.
10.
Guo
,
X.
,
Wang
,
J. B.
, and
Zhang
,
H. W.
, 2006, “
Mechanical Properties of Single-Walled Carbon Nanotubes Based on Higher Order Cauchy–Born Rule
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1276
1290
.
11.
Wang
,
J. B.
,
Guo
,
X.
,
Zhang
,
H. W.
,
Wang
,
L.
, and
Liao
,
J. B.
, 2006, “
Energy and Mechanical Properties of Single-Walled Carbon Nanotubes Predicted Using the Higher Order Cauchy–Born Rule
,”
Phys. Rev. B
0163-1829,
73
, p.
115428
.
12.
Sun
,
Y. Z.
, and
Liew
,
K. M.
, 2008, “
The Buckling of Single-Walled Carbon Nanotubes Upon Bending: The Higher Order Gradient Continuum and Mesh-Free Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
, pp.
3001
3013
.
13.
Liew
,
K. M.
, and
Sun
,
Y. Z.
, 2008, “
Elastic Properties and Pressure-Induced Structural Transitions of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
77
, p.
205437
.
14.
Qian
,
D.
,
Wagner
,
G. J.
,
Ruoff
,
R. S.
,
Yu
,
M. F.
, and
Liu
,
W. K.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
15.
Huang
,
Y.
, and
Wang
,
Z. L.
, 2003,
Comprehensive Structural Integrity Handbook 8
,
Elsevier
,
New York
, pp.
551
579
.
16.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
17.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1265
1279
.
18.
Wang
,
Q.
,
Duan
,
W. H.
,
Liew
,
K. M.
, and
He
,
X. Q.
, 2007, “
Inelastic Buckling of Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
033110
.
19.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2006, “
Buckling of Multi-Walled Carbon Nanotubes Using Timoshenko Column Model
,”
J. Eng. Mech.
0733-9399,
132
, pp.
952
958
.
20.
Popov
,
V. N.
, and
Henrard
,
L.
, 2002, “
Breathinglike Phonon Modes of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
65
, p.
235415
.
21.
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
He
,
X. Q.
, 2007, “
Vibration of Nonlocal Timoshenko Beams
,”
Nanotechnology
0957-4484,
18
, p.
105401
.
22.
He
,
X. Q.
,
Eisenberger
,
M.
, and
Liew
,
K. M.
, 2006, “
The Effect of Van Der Waals Interaction Modeling on the Vibration Characteristics of Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
100
, p.
124317
.
23.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
, 2004, “
Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
622
631
.
24.
Natsuki
,
T.
,
Hayashi
,
T.
, and
Endo
,
M.
, 2005, “
Wave Propagation of Carbon Nanotubes Embedded in an Elastic Medium
,”
J. Appl. Phys.
0021-8979,
97
, p.
044307
.
25.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2003, “
Single-Walled Carbon Nanotubes as Ultrahigh Frequency Nanomechanical Resonators
,”
Phys. Rev. B
0163-1829,
68
, p.
073405
.
26.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2002, “
Noncoaxial Resonance of an Isolated Multiwall Carbon Nanotube
,”
Phys. Rev. B
0163-1829,
66
, p.
233402
.
27.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
,
Chi
,
V.
,
Brooks
,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
582
584
.
28.
Wang
,
Q.
, 2004, “
Effective In-Plane Stiffness and Bending Rigidity of Armchair and Zigzag Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
5451
5461
.
29.
Natsuki
,
T.
,
Endo
,
M.
, and
Tsuda
,
H.
, 2006, “
Vibration Analysis of Embedded Carbon Nanotubes Using Wave Propagation Approach
,”
J. Appl. Phys.
0021-8979,
99
, p.
034311
.
30.
Wang
,
L. F.
, and
Hu
,
H. Y.
, 2005, “
Transverse Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
195412
.
31.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for Van Der Waals Interaction
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
303
326
.
32.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Triple-Walled Carbon Nanotubes Embedded in an Elastic Matrix
,”
J. Appl. Phys.
0021-8979,
97
, p.
114318
.
33.
Chang
,
T. C.
,
Guo
,
W. L.
, and
Guo
,
X. M.
, 2005, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression and Bending via a Molecular Mechanics Model
,”
Phys. Rev. B
0163-1829,
72
, p.
064101
.
34.
Lu
,
W. B.
,
Liu
,
B.
,
Wu
,
J.
,
Xiao
,
J.
,
Hwang
,
K. C.
,
Fu
,
S. Y.
, and
Huang
,
Y.
, 2009, “
Continuum Modeling of Van Der Waals Interactions Between Carbon Nanotube Walls
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
101917
.
35.
Xu
,
K. Y.
,
Guo
,
X. N.
, and
Ru
,
C. Q.
, 2006, “
Vibration of a Double-Walled Carbon Nanotube Aroused by Nonlinear Intertube Van Der Waals Forces
,”
J. Appl. Phys.
0021-8979,
99
, p.
064303
.
36.
Shen
,
H. S.
, 2004, “
Postbuckling Prediction of Double-Walled Nanotubes Under Hydrostatic Pressure
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2643
2657
.
37.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2006, “
Postbuckling Prediction of Axially Loaded Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects
,”
Phys. Rev. B
0163-1829,
74
, p.
035410
.
38.
Shen
,
H. S.
, and
Zhang
,
C. L.
, 2007, “
Postbuckling of Double-Walled Carbon Nanotubes With Temperature Dependent Properties and Initial Defects Under Combined Axial and Radial Mechanical Loads
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1461
1487
.
39.
Lennard-Jones
,
J. E.
, 1924, “
The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas With Temperature
,”
Proc. R. Soc. London A
0950-1207,
106
, pp.
441
462
.
40.
Girifalco
,
L. A.
, and
Lad
,
R. A.
, 1956, “
Energy of Cohesion, Compressibility, and the Potential Energy Function of Graphite System
,”
J. Chem. Phys.
0021-9606,
25
, pp.
693
697
.
41.
Chen
,
J.
, and
Babcock
,
C. D.
, 1975, “
Nonlinear Vibration of Cylindrical Shells
,”
AIAA J.
0001-1452,
13
, pp.
868
876
.
42.
He
,
X. Q.
,
Qu
,
C.
, and
Qin
,
Q. H.
, 2007, “
Buckling and Post-Buckling Analysis of Multi-Walled Carbon Nanotubes Based on the Continuum Shell Model
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
7
, pp.
629
645
.
43.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
, pp.
115429
.
44.
Allen
,
H. G.
, and
Bulson
,
P. S.
, 1980,
Background To Buckling
,
McGraw-Hill
,
UK
.
You do not currently have access to this content.