In this paper, a new version of mixed finite element–differential quadrature formulation is presented for solving time-dependent problems. The governing partial differential equation of motion of the structure is first reduced to a set of ordinary differential equations (ODEs) in time using the finite element method. The resulting system of ODEs is then satisfied at any discrete time point apart and changed to a set of algebraic equations by the application of differential quadrature method (DQM) for time derivative discretization. The resulting set of algebraic equations can be solved by either direct methods (such as the Gaussian elimination method) or iterative methods (such as the Gauss–Seidel method). The mixed formulation enjoys the strong geometry flexibility of the finite element method and the high accuracy, low computational efforts, and efficiency of the DQM. The application of the formulation is then shown by solving some moving load class of problems (i.e., moving force, moving mass, and moving oscillator problems). The stability property and computational efficiency of the scheme are also discussed in detail. Numerical results show that the proposed mixed methodology can be used as an efficient tool for handling the time-dependent problems.

1.
Dahlquist
,
G.
, 1963, “
A Special Stability Problem for Linear Multistep Methods
,”
BIT, Nord. Tidskr. Inf.behandl.
0006-3835,
3
, pp.
27
43
.
2.
Fan
,
S. C.
,
Fung
,
T. C.
, and
Sheng
,
G.
, 1997, “
A Comprehensive Unified Set of Single-Step Algorithms With Controllable Dissipation for Dynamics. Part I. Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
145
, pp.
87
98
.
3.
Fan
,
S. C.
,
Fung
,
T. C.
, and
Sheng
,
G.
, 1997, “
A Comprehensive Unified Set of Single-Step Algorithms With Controllable Dissipation for Dynamics. Part II. Algorithms and Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
145
, pp.
99
107
.
4.
Fung
,
T. C.
, 1997, “
Unconditionally Stable Higher-Order Newmark Methods by Sub-Stepping Procedure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
147
, pp.
61
84
.
5.
Nørsett
,
S. P.
, 1974, “
One-Step Methods of Hermite Type for Numerical Integration of Stiff Systems
,”
BIT, Nord. Tidskr. Inf.behandl.
0006-3835,
14
, pp.
63
77
.
6.
Nørsett
,
S. P.
, 1978, “
Restricted Padé Approximations to the Exponential Function
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
15
, pp.
1008
1029
.
7.
Nørsett
,
S. P.
, 1984,
Splines and Collocation for Ordinary Initial Value Problems
,
Reidel
,
Dordrecht
, pp.
397
417
.
8.
Hairer
,
E.
,
Nørsett
,
S. P.
, and
Wanner
,
G.
, 1993,
Solving Ordinary Differential Equations I. Nonstiff Problems
,
Springer
,
Berlin
.
9.
Wood
,
W. L.
, 1990,
Practical Time-Stepping Schemes
,
Clanderon
,
Oxford
.
10.
Fung
,
T. C.
, 2001, “
Unconditionally Stable Collocation Algorithms for Second Order Initial Value Problems
,”
J. Sound Vib.
0022-460X,
247
(
2
), pp.
343
365
.
11.
Fung
,
T. C.
, 1998, “
Complex Time-Step Newmark Methods With Controllable Numerical Dissipation
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
65
93
.
12.
Fung
,
T. C.
, 1998, “
Higher Order Time-Step Integration Methods With Complex Time Steps
,”
J. Sound Vib.
0022-460X,
210
, pp.
69
89
.
13.
Fung
,
T. C.
, 1999, “
Complex Time-Step Methods for Transient Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1253
1271
.
14.
Tamma
,
K. K.
,
Zhou
,
X.
, and
Sha
,
D.
, 2000, “
The Time Dimension: A Theory Towards the Evolution, Classification, Characterization and Design of Computational Algorithms for Transient/Dynamic Applications
,”
Arch. Comput. Methods Eng.
1134-3060,
7
, pp.
67
290
.
15.
Tamma
,
K. K.
,
Zhou
,
X.
, and
Sha
,
D.
, 2001, “
A Theory of Development and Design of Generalized Integration Operators for Computational Structural Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
1619
1664
.
16.
Tamma
,
K. K.
,
Sha
,
D.
, and
Zhou
,
X.
, 2003, “
Time Discretized Operators. Part 1: Towards the Theoretical Design of a New Generation of a Generalized Family of Unconditionally Stable Implicit and Explicit Representations of Arbitrary Order for Computational Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
257
290
.
17.
Sha
,
D.
,
Zhou
,
X.
, and
Tamma
,
K. K.
, 2003, “
Time Discretized Operators. Part 2: Towards the Theoretical Design of a New Generation of a Generalized Family of Unconditionally Stable Implicit and Explicit Representations of Arbitrary Order for Computational Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
291
329
.
18.
Kanapady
,
R.
, and
Tamma
,
K. K.
, 2003, “
On the Novel Design of a New Unified Variational Framework of Discontinuous/Continuous Time Operators of High Order and Equivalence
,”
Finite Elem. Anal. Design
0168-874X,
39
, pp.
727
749
.
19.
Zhou
,
X.
, and
Tamma
,
K. K.
, 2004, “
Design, Analysis, and Synthesis of Generalized Single Step Single Solve and Optimal Algorithms for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
597
668
.
20.
Zhou
,
X.
,
Tamma
,
K. K.
, and
Sha
,
D.
, 2005, “
Design Spaces, Measures and Metrics for Evaluating Quality of Time Operators and Consequences Leading to Improved Algorithms by Design—Illustration to Structural Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
64
, pp.
1841
1870
.
21.
Bellman
,
R. E.
, and
Casti
,
J.
, 1971, “
Differential Quadrature and Long-Term Integration
,”
J. Math. Anal. Appl.
0022-247X,
34
, pp.
235
238
.
22.
Bert
,
C. W.
, and
Malik
,
M.
, 1996, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
1
28
.
23.
Tanaka
,
M.
, and
Chen
,
W.
, 2001, “
Coupling Dual Reciprocity BEM and Differential Quadrature Method for Time-Dependent Diffusion Problems
,”
Appl. Math. Model.
0307-904X,
25
, pp.
257
268
.
24.
Tanaka
,
M.
, and
Chen
,
W.
, 2001, “
Dual Reciprocity BEM Applied to Transient Elastodynamic Problems With Differential Quadrature Method in Time
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
2331
2347
.
25.
Chen
,
W.
, and
Tanaka
,
M.
, 2002, “
A Study on Time Schemes for DRBEM Analysis of Elastic Impact Wave
,”
Comput. Mech.
0178-7675,
28
, pp.
331
338
.
26.
Fung
,
T. C.
, 2002, “
Stability and Accuracy of Differential Quadrature Method in Solving Dynamic Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
1311
1331
.
27.
Wang
,
X.
, and
Bert
,
C. W.
, 1993, “
A New Approach in Applying Differential Quadrature to Static and Free Vibration of Beams and Plates
,”
J. Sound Vib.
0022-460X,
162
, pp.
566
572
.
28.
Malik
,
M.
, and
Bert
,
C. W.
, 1996, “
Implementing Multiple Boundary Conditions in the DQ Solution of Higher-Order PDE’s: Application to Free Vibration of Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
1237
1258
.
29.
Eftekhari
,
S. A.
, 2006, “
Dynamic Analysis of a Composite Beam, Rested on Visco-Elastic Foundation, Carrying Multiple Accelerating Oscillators Using a Coupled Finite Element-Differential Quadrature Method
,” MS thesis, Shiraz University, Shiraz, Iran.
30.
Eftekhari
,
S. A.
, and
Farid
,
M.
, 2006, “
Dynamic Analysis of Multi-Span Laminated Composite Coated Beams Carrying Multiple Accelerating Oscillators
,” ASME Paper No. IMECE2006-13872.
31.
Eftekhari
,
S. A.
,
Farid
,
M.
, and
Khani
,
M.
, 2009, “
Dynamic Analysis of Laminated Composite Coated Beams Carrying Multiple Accelerating Oscillators Using a Coupled Finite Element-Differential Quadrature Method
,”
ASME J. Appl. Mech.
0021-8936,
76
, pp.
061001
.
32.
Bozkaya
,
C.
, 2007, “
Least-Squares Differential Quadrature Time Integration Scheme in the Dual Reciprocity Boundary Element Method Solution of Diffusive-Convective Problems
,”
Eng. Anal. Boundary Elem.
0955-7997,
31
, pp.
83
93
.
33.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
Zienliewicz
,
O. C.
, and
Taylor
,
R. L.
, 1990,
The Finite Element Method
, 4th ed.,
McGraw-Hill
,
NewYork
.
35.
Mancuso
,
M.
, and
Ubertini
,
F.
, 2002, “
The Nørsett Time Integration Methodology for Finite Element Transient Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
3297
3327
.
36.
Bert
,
C. W.
,
Jang
,
S. K.
, and
Striz
,
A. G.
, 1988, “
Two New Approximate Methods for Analysing Free Vibration of Structural Components
,”
AIAA J.
0001-1452,
26
, pp.
612
618
.
37.
Jang
,
S. K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
, 1989, “
Application of Differential Quadrature to Static Analysis of Structural Components
,”
Int. J. Numer. Methods Eng.
0029-5981,
28
, pp.
561
577
.
38.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
39.
Bathe
,
K. J.
, and
Wilson
,
E. L.
, 1976,
Numerical Methods in Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Rieker
,
J. R.
,
Lin
,
Y. -H.
, and
Trethewey
,
M. W.
, 1996, “
Discretization Considerations in Moving Load Finite Element Beam Models
,”
Finite Elem. Anal. Design
0168-874X,
21
, pp.
129
144
.
41.
Lin
,
Y. H.
, and
Tretheway
,
M. W.
, 1990, “
Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads
,”
J. Sound Vib.
0022-460X,
136
(
2
), pp.
323
342
.
42.
Pesterev
,
A. V.
,
Yang
,
B. L.
,
Bergman
,
A.
, and
Tan
,
C. A.
, 2001, “
Response of Elastic Continuum Carrying Multiple Moving Oscillators
,”
J. Eng. Mech.
0733-9399,
127
(
3
), pp.
260
265
.
You do not currently have access to this content.