Band gaps appear in the frequency spectra of periodic materials and structures. In this work we examine flexural wave propagation in beams and investigate the effects of the various types and properties of periodicity on the frequency band structure, especially the location and width of band gaps. We consider periodicities involving the repeated spatial variation of material, geometry, boundary and/or suspended mass along the span of a beam. In our formulation, we implement Bloch’s theorem for elastic wave propagation and utilize Timoshenko beam theory for the kinematical description of the underlying flexural motion. For the calculation of the frequency band structure we use the transfer matrix method, derived here in generalized form to enable separate or combined consideration of the different types of periodicity. Our results provide band-gap maps as a function of the type and properties of periodicity, and as a prime focus we identify and mathematically characterize the condition for the transition between Bragg scattering and local resonance, each being a unique wave propagation mechanism, and show the effects of this transition on the lowest band gap. The analysis presented can be extended to multi-dimensional phononic crystals and acoustic metamaterials.

References

1.
Mead
,
D. J.
, 1996, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
193
(
3
), pp.
495
524
.
2.
Thomson
,
W. T.
, 1950, “
Transmission of Elastic Waves Through a Stratified Solid Medium
,”
J. Appl. Phys.
,
21
, pp.
89
93
.
3.
Mead
,
D. J.
, 1986, “
A New Method of Analyzing Wave Propagation in Periodic Structures: Application to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
,
104
(
1
), pp.
9
27
.
4.
Heckl
,
M. A.
, 2002, “
Coupled Waves on a Periodically Supported Timoshenko Beam
,”
J. Sound Vib.
,
252
(
5
), pp.
849
882
.
5.
Velo
,
A. P.
,
Gazonas
,
G. A.
,
Bruder
,
E.
, and
Rodriguez
,
N.
, 2008, “
Recursive Dispersion Relations in One-Dimensional Periodic Elastic Media
,”
SIAM J. Appl. Math.
,
69
(
3
), pp.
670
689
.
6.
Esquivel-Sirvent
,
R.
, and
Cocoletzi
,
G. H.
, 1994, “
Band-Structure for the Propagation of Elastic-Waves in Superlattices
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
86
90
.
7.
Cao
,
W. W.
, and
Qi
,
W. K.
, 1995, “
Plane-Wave Propagation in Finite 2-2-Composites
,”
J. Appl. Phys.
,
78
(
7
), pp.
4627
4632
.
8.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
, 2006, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
9.
Yeh
,
J. Y.
, and
Chen
,
L. W.
, 2006, “
Wave Propagations of a Periodic Sandwich Beam by FEM and the Transfer Matrix Method
,”
Composite Structures
,
73
, pp.
53
60
.
10.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Zhao
,
H. G.
,
Wang
,
G.
, and
Qiu
,
J.
, 2006, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
, p.
064301
.
11.
Dianlong
,
Y.
,
Yaozong
,
L.
,
Gang
,
W.
,
Honggang
,
Z.
and
Jing
,
Q.
, 2006, “
Flexural Vibration Band Gaps in Timoshenko Beams With Locally Resonant Structures
,”
J. Appl. Phys.
,
100
, p.
124901
.
12.
Shen
,
H. J.
,
Wen
,
J. H.
,
Yu
,
D. L.
, and
Wen
,
X. S.
, 2009, “
Flexural Vibration Property of Periodic Pipe System Conveying Fluid Based on Timoshenko Beam Equation
,”
Acta Phys. Sin.
,
58
(
12
), pp.
8357
8363
.
13.
Shen
,
H. J.
,
Wen
,
J. H.
,
Yu
,
D. L.
, and
Wen
,
X. S.
, 2009, “
The Vibrational Properties of a Periodic Composite Pipe in 3D Space
,”
J. Sound Vib.
,
328
(
1-2
), pp.
57
70
.
14.
Zhong
,
W. X.
and
Williams
,
F. W.
, 1992, “
Wave Problems for Repetitive Structures and Symplectic Mathematics
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
206
(
6
), pp.
371
379
.
15.
Langley
,
R. S.
, 1996, “
A Transfer Matrix Method Analysis of the Energetics of Structural Wave Motion and Harmonic Vibration
,”
Proc. R. Soc. London Ser. A
,
452
(
1950
), pp.
1631
1648
.
16.
Lee
,
C. Y.
,
Leamy
,
M. J.
, and
Nadler
,
J. H.
, 2010, “
Frequency Band Structure and Absorption Predictions for Multi-Periodic Acoustic Composites
,”
J. Sound Vib.
,
329
(
10
), pp.
1809
1822
.
17.
Timoshenko
,
S. P.
, 1921, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Bars of Prismatic Bars
,”
Philos. Mag.
,
41
, pp.
744
746
.
18.
Timoshenko
,
S. P.
, 1922, “
On the Transverse Vibrations of Bars of Uniform Cross-section
,”
Philos. Mag.
,
43
, pp.
125
131
.
19.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
, 2006, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidiscip. Optim.
,
31
(
1
), pp.
60
75
.
20.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
, 2007, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Design
,”
J. Sound Vib.
,
307
(
3–5
), pp.
865
893
.
21.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
, 2003, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
, pp.
363
372
.
22.
Ruzzene
,
M.
and
Scarpa
,
F.
, 2005, “
Directional and Band-Gap Behavior of Periodic Auxetic Lattices
,”
Phys. Status Solidi B
,
242
(
3
), pp.
665
680
.
23.
Diaz
,
A. R.
,
Haddow
,
A. G.
, and
Ma
,
L.
, 2005, “
Design of Band-Gap Grid Structures
,”
Struct. Multidiscip. Optim.
,
29
, pp.
418
431
.
24.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
, 2006, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.
25.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
, 2007, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,”
Phys. Rev. B
,
76
(
5
), p.
054309
.
26.
Mead
,
D. J.
, 1973, “
General Theory of Harmonic Wave-Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
,
27
(
2
), pp.
235
260
.
27.
Tassilly
,
E.
, 1987, “
Propagation of Bending Waves in a Periodic Beam
,”
Int. J. Comput. Eng. Sci.
,
15
(
1
), pp.
85
94
.
28.
Hussein
,
M. I.
, 2009, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
, p.
212301
.
29.
Hussein
,
M. I.
, and
Frazier
,
M. J.
, 2010, “
Band Structure of Phononic Crystals with General Damping
,”
J. Appl. Phys.
,
108
, p.
093506
.
30.
Graff
,
K. F.
, 1991,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
31.
Pestel
,
E. D.
, and
Leckie
,
F. A.
, 1963,
Matrix Methods in Elastomechanics
McGraw-Hill
,
New York
.
32.
Bloch
,
F.
, 1928, “
Über die Quantenmechanik der Electron in Kristallgittern
,”
Zeifschrift für Physik
,
52
, pp.
555
600
.
33.
Richards
,
D.
, and
Pines
,
D. J.
, 2003, “
Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft
,”
J. Sound Vib.
,
264
, pp.
317
342
.
34.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2000, “
Locally Resonant Sonic Crystals
,”
Science
,
289
(
5485
), pp.
1734
1736
.
35.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2002, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
, p.
165116
.
36.
Hsu
,
J.-C.
, and
Wu
,
T. T.
, 2007, “
Lamb Waves in Binary Locally Resonant Phononic Plates with Two-Dimensional Lattices
,”
Appl. Phys. Lett.
,
90
, p.
201904
.
37.
Achaoui
,
Y.
,
Khelif
,
A.
,
Benchabane
,
S.
,
Robert
,
L.
, and
Laude
,
V.
, 2011, “
Experimental Observation of Locally-Resonant and Bragg Band Gaps for Surface Guided Waves in a Phononic Crystal of Pillars
,”
Phys. Rev. B
,
83
, p.
104201
.
38.
Goffaux
,
C.
,
Sánchez-Dehesa
,
J.
,
Yeyati
,
L.
,
Lambin
,
Ph.
,
Khelif
,
A.
,
Vasseur
,
J. O.
, and
Djafari-Rouhani
,
B.
, 2002, “
Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials
,”
Phys. Rev. Lett.
,
88
(
22
), p.
225502
.
39.
Lu
,
M.-H.
,
Feng
,
L.
, and
Chen
,
Y.-F.
, 2009, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
.
40.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
, and
Saitou
,
K.
, 2007, “
Optimal Synthesis of 2D Phononic Crystals for Broadband Frequency Isolation
,”
Waves in Random and Complex Media
,
17
(
4
), pp.
491
510
.
41.
Zhou
,
X.-Z.
,
Wang
,
Y.-S.
, and
Zhang
,
C. Z.
, 2009, “
Effects of Material Parameters on Elastic Band Gaps of Two-Dimensional Solid Phononic Crystals
,”
J. Appl. Phys.
,
106
(
1
), p.
014903
.
42.
Díaz-de-Anda
,
A.
,
Pimentel
,
A.
,
Flores
,
J.
,
Morales
,
A.
,
Gutiérrez
,
L.
, and
Méndez-Sánchez
,
R. A.
, 2005, “
Locally Periodic Timoshenko Rod: Experiment and Theory
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2814
2819
.
43.
Spadoni
,
A.
, and
Daraio
,
C.
, 2009, “
Vibration Isolation Via Linear and Nonlinear Devices Periodic Devices
,”
DETC2009-87620, Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, [CD ROM, pp.
1
8
],
ASME Publications
,
New York
.
44.
Hsu
,
J.-C.
, and
Wu
,
T.T.
, 2006, “
Efficient Formulation for Band-Structure Calculations of Two-Dimensional Phononic-Crystal Plates
,”
Phys. Rev. B
74
, p.
144303
.
45.
Oudich
,
M.
,
Assouar
,
M. B.
, and
Hou
,
Z.
, 2010, “
Propagation of Acoustic Waves and Waveguiding in a Two-Dimensional Locally Resonant Phononic Crystal Plate
,”
Appl. Phys. Lett.
,
97
, p.
193503
.
46.
El Hassouani
,
Y.
,
Li
,
C.
,
Pennec
,
Y.
,
El Boudouti
,
E. H.
,
Larabi
,
H.
,
Akjouj
,
A.
,
Bou
Matar
,
O.
,
Laude
,
V.
,
Papanikolaou
,
N.
,
Martinez
,
A.
, and
Djafari Rouhani
,
B.
, 2010, “
Dual Phononic and Photonic Band Gaps in a Periodic Array of Pillars Deposited on a Thin Plate
,”
Phys. Rev. B
82
, p.
155405
.
You do not currently have access to this content.