Dynamic steady-state spherical cavitation fields are examined with emphasis on material porosity at large strain. Cavity expansion is driven by constant internal pressure in presence of remote tension or compression. The plastic branch of constitutive relations is described by the Gurson model, with arbitrary strain hardening. The mathematical model is reduced to a system of four ordinary nonlinear coupled differential equations. Numerical examples show that a plastic shock wave builds up as expansion velocity approaches a critical value and jump conditions across the shock are accounted for. At critical levels of remote tension, quasi-static cavitation of all internal voids is induced before dynamic cavity expansion occurs.

References

1.
Masri
,
R.
, and
Durban
,
D.
,
2005
, “
Dynamic Spherical Cavity Expansion in an Elastoplastic Compressible Mises Solid
,”
J. Appl. Mech.
,
72
, pp.
887
898
.10.1115/1.1985428
2.
Masri
,
R.
, and
Durban
,
D.
,
2009
, “
Deep Penetration Analysis With Dynamic Cylindrical Cavitation Fields
,”
Int. J. Impact Eng.
,
86
, pp.
830
841
.10.1016/j.ijimpeng.2008.12.006
3.
Cohen
,
T.
,
Masri
,
R.
, and
Durban
,
D.
,
2010
, “
Shock Waves in Dynamic Cavity Expansion
,”
J. Appl. Mech.
,
77
, p.
041009
.10.1115/1.4000914
4.
Durban
,
D.
, and
Fleck
,
N. A.
,
1997
, “
Spherical Cavity Expansion in a Drucker-Prager Solid
,”
J. Appl. Mech.
,
64
, pp.
743
750
.10.1115/1.2788978
5.
Durban
,
D.
, and
Masri
,
R.
,
2004
, “
Dynamic Spherical Cavity Expansion in a Pressure Sensitive Elastoplastic Medium
,”
Int. J. Solids Struct.
,
41
, pp.
5697
5716
.10.1016/j.ijsolstr.2004.03.009
6.
Ashby
,
M. F.
,
Blunt
,
F. J.
, and
Bannister
,
M.
,
1989
, “
Flow Characteristics of Highly Constrained Metal Wires
,”
Acta Metall.
,
37
, pp.
1847
1875
.10.1016/0001-6160(89)90069-2
7.
Tvergaard
,
V.
, and
Vadillo
,
G.
,
2007
, “
Influence of Porosity on Cavitation Instability Predictions for Elastic-Plastic Solids
,”
Int. J. Mech. Sci.
,
49
, pp.
210
216
.10.1016/j.ijmecsci.2006.08.004
8.
Bishop
,
R. F.
,
Hill
,
R.
, and
Mott
,
N. F.
,
1945
, “
The Theory of Indentation and Hardness Tests
,”
Proc. Phys. Soc.
,
57
, pp.
147
159
.10.1088/0959-5309/57/3/301
9.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rapture by Void Nucliation and Growth: Part 1—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mat. Tech.
,
99
, pp.
2
15
.10.1115/1.3443401
10.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, pp.
389
407
.10.1007/BF00036191
11.
Nahson
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A/Solids
,
27
, pp.
1
17
.10.1016/j.euromechsol.2007.08.002
12.
Durban
,
D.
,
Cohen
,
T.
, and
Hollander
,
Y.
,
2010
, “
Plastic Response of Porous Solids With Pressure Sensitive Matrix
,”
Mech. Res. Commun.
,
37
, pp.
636
641
.10.1016/j.mechrescom.2010.09.002
13.
Goodier
,
J. N.
,
1965
, “
On the Mechanics of Indentation and Cratering in the Solid Targets of Strain Hardening Metal by Impact of Hard and Soft Spheres
,”
Proceedings of the 7th Symposium on Hypervelocity Impact
, Vol.
III
, pp.
215
259
.
14.
Durban
,
D.
, and
Baruch
,
M.
,
1977
, “
Analysis of an Elasto-Plastic Sphere Loaded by Internal and External Pressure
,”
Int. J. Nonlinear Mech.
,
12
, pp.
9
21
.10.1016/0020-7462(77)90012-9
15.
Durban
,
D.
, and
Baruch
,
M.
,
1976
, “
On the Problem of a Spherical Cavity in an Infinite Elasto-Plastic Medium
,”
J. Appl. Mech.
,
43
, pp.
633
638
.10.1115/1.3423946
16.
Ball
,
J. M.
,
1982
, “
Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity
,”
Philos. Trans. R. Soc. London
,
306
, pp.
557
611
.10.1098/rsta.1982.0095
You do not currently have access to this content.