Dynamic steady-state spherical cavitation fields are examined with emphasis on material porosity at large strain. Cavity expansion is driven by constant internal pressure in presence of remote tension or compression. The plastic branch of constitutive relations is described by the Gurson model, with arbitrary strain hardening. The mathematical model is reduced to a system of four ordinary nonlinear coupled differential equations. Numerical examples show that a plastic shock wave builds up as expansion velocity approaches a critical value and jump conditions across the shock are accounted for. At critical levels of remote tension, quasi-static cavitation of all internal voids is induced before dynamic cavity expansion occurs.
Issue Section:
Research Papers
References
1.
Masri
, R.
, and Durban
, D.
, 2005
, “Dynamic Spherical Cavity Expansion in an Elastoplastic Compressible Mises Solid
,” J. Appl. Mech.
, 72
, pp. 887
–898
.10.1115/1.19854282.
Masri
, R.
, and Durban
, D.
, 2009
, “Deep Penetration Analysis With Dynamic Cylindrical Cavitation Fields
,” Int. J. Impact Eng.
, 86
, pp. 830
–841
.10.1016/j.ijimpeng.2008.12.0063.
Cohen
, T.
, Masri
, R.
, and Durban
, D.
, 2010
, “Shock Waves in Dynamic Cavity Expansion
,” J. Appl. Mech.
, 77
, p. 041009
.10.1115/1.40009144.
Durban
, D.
, and Fleck
, N. A.
, 1997
, “Spherical Cavity Expansion in a Drucker-Prager Solid
,” J. Appl. Mech.
, 64
, pp. 743
–750
.10.1115/1.27889785.
Durban
, D.
, and Masri
, R.
, 2004
, “Dynamic Spherical Cavity Expansion in a Pressure Sensitive Elastoplastic Medium
,” Int. J. Solids Struct.
, 41
, pp. 5697
–5716
.10.1016/j.ijsolstr.2004.03.0096.
Ashby
, M. F.
, Blunt
, F. J.
, and Bannister
, M.
, 1989
, “Flow Characteristics of Highly Constrained Metal Wires
,” Acta Metall.
, 37
, pp. 1847
–1875
.10.1016/0001-6160(89)90069-27.
Tvergaard
, V.
, and Vadillo
, G.
, 2007
, “Influence of Porosity on Cavitation Instability Predictions for Elastic-Plastic Solids
,” Int. J. Mech. Sci.
, 49
, pp. 210
–216
.10.1016/j.ijmecsci.2006.08.0048.
Bishop
, R. F.
, Hill
, R.
, and Mott
, N. F.
, 1945
, “The Theory of Indentation and Hardness Tests
,” Proc. Phys. Soc.
, 57
, pp. 147
–159
.10.1088/0959-5309/57/3/3019.
Gurson
, A. L.
, 1977
, “Continuum Theory of Ductile Rapture by Void Nucliation and Growth: Part 1—Yield Criteria and Flow Rules for Porous Ductile Media
,” J. Eng. Mat. Tech.
, 99
, pp. 2
–15
.10.1115/1.344340110.
Tvergaard
, V.
, 1981
, “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,” Int. J. Fract.
, 17
, pp. 389
–407
.10.1007/BF0003619111.
Nahson
, K.
, and Hutchinson
, J. W.
, 2008
, “Modification of the Gurson Model for Shear Failure
,” Eur. J. Mech. A/Solids
, 27
, pp. 1
–17
.10.1016/j.euromechsol.2007.08.00212.
Durban
, D.
, Cohen
, T.
, and Hollander
, Y.
, 2010
, “Plastic Response of Porous Solids With Pressure Sensitive Matrix
,” Mech. Res. Commun.
, 37
, pp. 636
–641
.10.1016/j.mechrescom.2010.09.00213.
Goodier
, J. N.
, 1965
, “On the Mechanics of Indentation and Cratering in the Solid Targets of Strain Hardening Metal by Impact of Hard and Soft Spheres
,” Proceedings of the 7th Symposium on Hypervelocity Impact
, Vol. III
, pp. 215
–259
.14.
Durban
, D.
, and Baruch
, M.
, 1977
, “Analysis of an Elasto-Plastic Sphere Loaded by Internal and External Pressure
,” Int. J. Nonlinear Mech.
, 12
, pp. 9
–21
.10.1016/0020-7462(77)90012-915.
Durban
, D.
, and Baruch
, M.
, 1976
, “On the Problem of a Spherical Cavity in an Infinite Elasto-Plastic Medium
,” J. Appl. Mech.
, 43
, pp. 633
–638
.10.1115/1.342394616.
Ball
, J. M.
, 1982
, “Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity
,” Philos. Trans. R. Soc. London
, 306
, pp. 557
–611
.10.1098/rsta.1982.0095Copyright © 2013 by ASME
You do not currently have access to this content.