An Eulerian rate formulation of finite strain elastoplasticity is developed based on a fully integrable rate form of hyperelasticity proposed in Part I of this work. A flow rule is proposed in the Eulerian framework, based on the principle of maximum plastic dissipation in six-dimensional stress space for the case of J2 isotropic plasticity. The proposed flow rule bypasses the need for additional evolution laws and/or simplifying assumptions for the skew-symmetric part of the plastic velocity gradient, known as the material plastic spin. Kinematic hardening is modeled with an evolution equation for the backstress tensor considering Prager’s yielding-stationarity criterion. Nonlinear evolution equations for the backstress and flow stress are proposed for an extension of the model to mixed nonlinear hardening. Furthermore, exact deviatoric/volumetric decoupled forms for kinematic and kinetic variables are obtained. The proposed model is implemented with the Zaremba–Jaumann rate and is used to solve the problem of rectilinear shear for a perfectly plastic and for a linear kinematic hardening material. Neither solution produces oscillatory stress or backstress components. The model is then used to predict the nonlinear hardening behavior of SUS 304 stainless steel under fixed-end finite torsion. Results obtained are in good agreement with reported experimental data. The Swift effect under finite torsion is well predicted by the proposed model.

References

1.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
2.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
, pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
3.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
4.
Hill
,
R.
,
1970
, “
Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain
,”
Proc. R. Soc. London, Ser. A
,
314
, pp.
457
472
.10.1098/rspa.1970.0018
5.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
Berlin
.
6.
Bruhns
,
O. T.
,
Xiao
,
H.
, and
Meyers
,
A.
,
1999
, “
Self-Consistent Eulerian Rate Type Elasto-Plasticity Models Based Upon the Logarithmic Stress Rate
,”
Int. J. Plast.
,
15
, pp.
479
520
.10.1016/S0749-6419(99)00003-0
7.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2006
, “
Elastoplasticity Beyond Small Deformations
,”
Acta Mech.
,
182
, pp.
31
111
.10.1007/s00707-005-0282-7
8.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformations at Finite Strains
,”
ASME J. Appl. Mech.
,
36
, pp.
1
6
.10.1115/1.3564580
9.
Lee
,
E. H.
,
1981
, “
Some Comments on Elastic-Plastic Analysis
,”
Int. J. Solids Struct.
,
17
, pp.
859
872
.10.1016/0020-7683(81)90101-3
10.
Nemat-Nasser
,
S.
,
1979
, “
Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
15
, pp.
155
166
.10.1016/0020-7683(79)90019-2
11.
Nemat-Nasser
,
S.
,
1982
, “
On Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
18
, pp.
857
72
.10.1016/0020-7683(82)90070-1
12.
Eterovic
,
A. L.
, and
Bathe
,
K. J.
,
1991
, “
A Note on the Use of the Additive Decomposition of the Strain Tensor in Finite Deformation Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
93
, pp.
31
38
.10.1016/0045-7825(91)90114-L
13.
Reinhardt
,
W. D.
, and
Dubey
,
R. N.
,
1998
, “
An Eulerian-Based Approach to Elastic-Plastic Decomposition
,”
Acta Mech.
,
131
, pp.
111
119
.10.1007/BF01178248
14.
Simo
,
J. C.
,
1988
, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
66
, pp.
199
219
.10.1016/0045-7825(88)90076-X
15.
Prager
,
W.
,
1960
, “
An Elementary Discussion of Definitions of Stress Rate
,”
Q. Appl. Math.
,
18
, pp.
403
407
.
16.
Metzger
,
D. R.
, and
Dubey
,
R. N.
,
1987
, “
Corotational Rates in Constitutive Modeling of Elastic–Plastic Deformation
,”
Int. J. Plast.
,
4
, pp.
341
368
.10.1016/0749-6419(87)90008-8
17.
Reinhardt
,
W. D.
, and
Dubey
,
R. N.
,
1996
, “
Application of Objective Rates in Mechanical Modeling of Solids
,”
ASME J. Appl. Mech.
,
118
, pp.
692
698
.10.1115/1.2823351
18.
Reinhardt
,
W. D.
, and
Dubey
,
R. N.
,
1996
, “
Coordinate-Independent Representation of Spins in Continuum Mechanics
,”
J. Elast.
,
42
, pp.
133
144
.10.1007/BF00040957
19.
Eshraghi
,
A.
,
Papoulia
,
K.
, and
Jahed
,
H.
,
2012
, “
Eulerian Framework for Inelasticity Based on the Jaumann Rate and a Hyperelastic Constitutive Relation—Part I: Rate-Form Hyperelasticity
,”
ASME J. Appl. Mech.
,
80
(2), pp.
021027
.10.1115/1.4007723
20.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of an Elastic-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
, pp.
251
281
.10.1007/BF00251666
21.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1966
, “
A Thermodynamic Development of Elastic-Plastic Continua
,”
Proceedings of the IUTAM Symposium on Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids
, Vienna, June 22–28,
H.
Parkus
and
L. I.
Sedov
, eds.,
Springer
,
New York
, pp.
117
131
.
22.
Naghdi
,
P. M.
,
1990
, “
A Critical Review of the State of Finite Plasticity
,”
ZAMP
,
41
, pp.
315
394
.10.1007/BF00959986
23.
Sidoroff
,
F.
,
1973
, “
The Geometrical Concept of Intermediate Configuration and Elastic-Plastic Finite Strain
,”
Arch. Mech.
,
25
, pp.
299
308
.
24.
Simo
,
J. C.
, and
Ortiz
,
M.
,
1985
, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
49
, pp.
221
245
.10.1016/0045-7825(85)90061-1
25.
Lubarda
,
V. A.
,
1999
, “
Duality in Constitutive Formulation of Finite-Strain Elastoplasticity Based on F=FeFp and F=FpFe Decompositions
,”
Int. J. Plast.
,
15
, pp.
1277
1290
.10.1016/S0749-6419(99)00039-X
26.
Lubarda
,
V. A.
,
2004
, “
Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplasticity, and Biomechanics
,”
ASME Appl. Mech. Rev.
,
57
, pp.
95
108
.10.1115/1.1591000
27.
Montans
,
F. J.
, and
Bathe
,
K. J.
,
2005
, “
Computational Issues in Large Strain Elastoplasticity: An Algorithm for Mixed Hardening and Plastic Spin
,”
Int. J. Numer. Methods Eng.
,
63
, pp.
159
196
.10.1002/nme.1270
28.
Simo
,
J. C.
,
1988
, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part II. Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
68
, pp.
1
31
.10.1016/0045-7825(88)90104-1
29.
Nemat-Nasser
,
S.
,
1990
, “
Certain Basic Issues in Finite-Deformation Continuum Plasticity
,”
Meccanica
,
25
, pp.
223
229
.10.1007/BF01559684
30.
Kratochvil
,
J.
,
1973
, “
On a Finite Strain Theory of Elastic-Plastic Materials
,”
Acta Mech.
,
16
, pp.
127
142
.10.1007/BF01177131
31.
Dafalias
,
Y. F.
,
1983
, “
Corotational Rates for Kinematic Hardening at Large Plastic Deformations
,”
ASME J. Appl. Mech.
,
50
, pp.
561
565
.10.1115/1.3167091
32.
Dafalias
,
Y. F.
,
1984
, “
A Missing Link in the Formulation and Numerical Implementation of Finite Transformation Elastoplasticity
,”
Constitutive Equations: Macro and Computational Aspects
,
K. J.
Williams
, ed.,
ASME
,
New York
.
33.
Cho
,
H. W.
, and
Dafalias
,
Y. F.
,
1996
, “
Distortional and Orientational Hardening at Large Viscoplastic Deformations
,”
Int. J. Plast.
,
12
, pp.
903
925
.10.1016/S0749-6419(96)00033-2
34.
Dafalias
,
Y. F.
,
1998
, “
Plastic Spin: Necessary or Redundancy?
,”
Int. J. Plast.
,
14
, pp.
909
931
.10.1016/S0749-6419(98)00036-9
35.
Argyris
,
J. H.
, and
Doltsinis
,
J.
St.
,
1979
, “
On the Large Strain Inelastic Analysis in Natural Formulation. Part I. Quasi-Static Problems
,”
Comput. Methods Appl. Mech. Eng.
,
20
, pp.
213
251
.10.1016/0045-7825(79)90020-3
36.
Argyris
,
J. H.
, and
Doltsinis
,
J.
St.
,
1980
, “
On the Large Strain Inelastic Analysis in Natural Formulation. Part II. Dynamic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
21
, pp.
91
126
.10.1016/0045-7825(80)90025-0
37.
Weber
,
G.
, and
Anand
,
L.
,
1990
, “
Finite Deformation Constitutive Equations and a Time Integration Procedure for Isotropic Hyperelastic-Viscoplastic Solids
,”
Comput. Method Appl. Mech. Eng.
,
79
, pp.
173
202
.10.1016/0045-7825(90)90131-5
38.
Gabriel
,
G.
, and
Bathe
,
K. J.
,
1995
, “
Some Computational Issues in Large Strain Elastoplastic Analysis
,”
Comput. Struct.
,
56
, pp.
249
267
.10.1016/0045-7949(95)00019-D
39.
Eshraghi
,
A.
,
Jahed
,
H.
, and
Lambert
,
S.
,
2010
, “
A Lagrangian Model for Hardening Behaviour of Materials at Finite Deformation Based on the Right Plastic Stretch Tensor
,”
Mater. Des.
,
31
, pp.
2342
2354
.10.1016/j.matdes.2009.12.002
40.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
On Large Deformation Generalized Plasticity
,”
J. Mech. Mater. Struct.
,
3
(
3
), pp.
441
457
.10.2140/jomms.2008.3.441
41.
Mandel
,
J.
,
1974
, “
Thermodynamics and Plasticity
,”
Proceedings of the International Symposium on Foundations of Continuum Thermodynamics
,
J. J.
Delgado
,
M. N. R.
Nina
, and
J. H.
Whitelaw
, eds.,
Macmillan
,
New York
, pp. 283–304.
42.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
Eulerian Structure of Generalized Plasticity: Theoretical and Computational Aspects
,”
J. Eng. Mech.
,
134
(
5
),
354
361
.10.1061/(ASCE)0733-9399(2008)134:5(354)
43.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
1994
,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
44.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley and Sons Ltd.
,
Chichester, UK
.
45.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Logarithmic Strain, Logarithmic Spin and Logarithmic Rate
,”
Acta Mech.
,
124
, pp.
89
105
.10.1007/BF01213020
46.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Hypoelasticity Model Based Upon the Logarithmic Stress Rate
,”
J. Elast.
,
47
, pp.
51
68
.10.1023/A:1007356925912
47.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1998
, “
On Objective Corotational Rates and Their Defining Spin Tensors
,”
Int. J. Solids Struct.
,
35
, pp.
4001
4014
.10.1016/S0020-7683(97)00267-9
48.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1998
, “
Strain Rates and Material Spins
,”
J. Elast.
,
52
, pp.
1
41
.10.1023/A:1007570827614
49.
Ogden
,
R. W.
,
1997
,
Nonlinear Elastic Deformation
,
Dover
,
New York
.
50.
Simo
,
J. C.
, and
Marsden
,
J. E.
,
1984
, “
On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula
,”
Arch. Ration. Mech. Anal.
,
86
, pp.
213
231
.10.1007/BF00281556
51.
Lubliner
,
J.
,
1984
, “
A Maximum-Dissipation Principle in Generalized Plasticity
,”
Acta Mech.
,
52
, pp.
225
237
.10.1007/BF01179618
52.
Lubliner
,
J.
,
1986
, “
Normality Rules in Large Deformation Plasticity
,”
Mech. Mater.
,
5
, pp.
29
34
.10.1016/0167-6636(86)90013-X
53.
Prager
,
W.
,
1956
, “
A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids
,”
ASME J. Appl. Mech.
,
23
, pp.
493
496
.
54.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2000
, “
The Choice of Objective Rates in Finite Elastoplasticity: General Results on the Uniqueness of the Logarithmic Rate
,”
Proc. R. Soc., London
,
456
, pp.
1865
1882
.10.1098/rspa.2000.0591
55.
Armstrong
,
P. J.
, and
Frederick
,
O. C.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” CEGB Report No. RD/B/N731.
56.
Voce
,
E.
,
1955
, “
A Practical Strain-Hardening Function
,”
Metallurgica
,
51
, pp.
219
226
.
57.
Ishikawa
,
H.
,
1999
, “
Constitutive Model of Plasticity in Finite Deformation
,”
Int. J. Plast.
,
15
, pp.
299
317
.10.1016/S0749-6419(98)00072-2
58.
Swift
,
W.
,
1947
, “
Length Changes in Metals Under Torsional Overstrain
,”
Engineering
,
163
, pp.
253
257
.
You do not currently have access to this content.