This work presents a review and theoretical study of the added-mass and aeroelastic instability exhibited by a linear elastic plate immersed in a mean flow. We first present a combined added-mass result for the model problem with a mean incompressible and compressible flow interacting with an elastic plate. Using the Euler–Bernoulli model for the plate and a 2D viscous potential flow model, a generalized closed-form expression of added-mass force has been derived for a flexible plate oscillating in fluid. A new compressibility correction factor is introduced in the incompressible added-mass force to account for the compressibility effects. We present a formulation for predicting the critical velocity for the onset of flapping instability. Our proposed new formulation considers tension effects explicitly due to viscous shear stress along the fluid-structure interface. In general, the tension effects are stabilizing in nature and become critical in problems involving low mass ratios. We further study the effects of the mass ratio and channel height on the aeroelastic instability using the linear stability analysis. It is observed that the proximity of the wall parallel to the plate affects the growth rate of the instability, however, these effects are less significant in comparison to the mass ratio or the tension effects in defining the instability. Finally, we conclude this paper with the validation of the theoretical results with experimental data presented in the literature.

References

1.
Datta
,
S.
and
Gottenberg
,
W.
,
1975
, “
Instability of an Elastic Strip Hanging in an Airstream
,”
ASME J. Appl. Mech.
,
42
, pp.
195
198
.10.1115/1.3423515
2.
Kornecki
,
A.
,
Dowell
,
E. H.
, and
Orien
,
J.
,
1976
, “
On the Aeroelastic Instability of Two-Dimensional Panels in Uniform Incompressible Flow
,”
J. Sound Vib.
,
47
(
2
), pp.
163
178
.10.1016/0022-460X(76)90715-X
3.
Blevins
,
R. D.
,
1990
Flow-Induced Vibration
,
Van Nostrand Reinhold
,
New York
.
4.
Paidoussis
,
M. P.
,
2004
,
Fluid-Structure Interactions. Slender Structures and Axial Flow
, Vol.
2
,
Academic
,
New York
.
5.
Brummelen
,
E. H.
,
2009
, “
Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction
,”
ASME J. Appl. Mech.
,
76
, pp.
173
189
.10.1115/1.3059565
6.
Brummelen
,
E. H.
,
2011
, “
Partitioned Iterative Solution Methods for Fluid–Structure Interaction
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
3
27
.10.1002/fld.2465
7.
Jaiman
,
R.
,
Shakib
,
F.
,
Oakley
,
O.
, and
Constantinides
,
Y.
,
2009
, “
Fully Coupled Fluid-Structure Interaction for Offshore Applications
,”
Proceedings of the ASME Offshore Mechanics and Arctic Engineering Conference
, Honolulu, HI, May 31–June 5,
ASME
Paper No. OMAE09-79804. 10.1115/OMAE2009-79804
8.
Jaiman
,
R.
,
2012
, “
Advances in ALE Based Fluid-Structure Interaction Modeling for Offshore Engineering Applications
,”
6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)
,
Vienna
, Austria, September 10–14.
9.
Forster
,
C.
,
Wall
,
W. A.
, and
Ramm
,
E.
,
2007
, “
Artificial Added Mass Instabilities in Sequential Staggered Coupling of Nonlinear Structures and Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
1278
1293
.10.1016/j.cma.2006.09.002
10.
Causin
,
P.
,
Gerbeau
,
J. F.
, and
Nobile
,
F.
,
2005
, “
Added-Mass Effect in the Design of Partitioned Algorithms for Fluid-Structure Problems
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4506
4527
.10.1016/j.cma.2004.12.005
11.
Jones
,
R.
,
1946
, “
Properties of Low-Aspect Ratio Pointed Wings at Speeds Below and Above the Speed of Sound
,” NASA Technical Report No. 835.
12.
Dugundji
,
J.
,
Dowell
,
E.
, and
Perkin
,
B.
,
1963
, “
Subsonic Flutter of Panels on Continuous Elastic Foundations
,”
AIAA J.
,
1
, pp.
1146
1154
.10.2514/3.54933
13.
Lucey
,
A. D.
,
1998
, “
The Excitation of Waves on a Flexible Panel in a Uniform Flow
,”
Philos. Trans. R. Soc. London, Ser. A
,
356
, pp.
2999
3039
.10.1098/rsta.1998.0306
14.
Guo
,
C.
and
Paidoussis
,
M.
,
2000
, “
Stability of Rectangular Plates With Free Side-Edges in Two-Dimensional Inviscid Channel Flow
,”
ASME J. Appl. Mech.
,
67
, pp.
171
176
.10.1115/1.321143
15.
Huang
,
L.
,
1995
, “
Flutter of Cantilevered Plates in Axial Flow
,”
J. Fluids Struct.
,
9
(2), pp.
127
147
.10.1006/jfls.1995.1007
16.
Yadykin
,
Y.
,
Tenetov
,
V.
, and
Levin
,
D.
,
2003
, “
The Added Mass of a Flexible Plate Oscillating in a Fluid
,”
J. Fluids Struct.
,
17
, pp.
115
123
.10.1016/S0889-9746(02)00100-7
17.
Shelley
,
M. J.
and
Zhang
,
J.
,
2011
, “
Flapping and Bending Bodies Interacting With Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
449
465
.10.1146/annurev-fluid-121108-145456
18.
Minami
,
H.
,
1998
, “
Added Mass of a Membrane Vibrating at Finite Amplitude
,”
J. Fluids Struct.
,
12
, pp.
919
932
.10.1006/jfls.1998.0175
19.
Mei
,
R.
,
Lawrence
,
C. J.
, and
Adrian
,
R. J.
,
1991
, “
Unsteady Drag on a Sphere at Finite Reynolds Number With Small Fluctuations in the Free-Stream Velocity
,”
J. Fluid Mech.
,
233
, pp.
613
631
.10.1017/S0022112091000629
20.
Chang
,
E. J.
and
Maxey
,
M. R.
,
1995
, “
Unsteady Flow About a Sphere at Low to Moderate Reynolds Number. Part 2. Accelerated Motion
,”
J. Fluid Mech.
,
303
, pp.
133
153
.10.1017/S0022112095004204
21.
Miles
,
J. W.
,
1951
, “
On Virtual Mass and Transient Motion in Subsonic Compressible Flow
,”
Q. J. Mech. Appl. Math.
,
4
(4), pp.
388
400
.10.1093/qjmam/4.4.388
22.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset-Boussinesq-Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084501
.10.1103/PhysRevLett.106.084501
23.
Parmar
,
M.
,
Balachandar
,
S.
, and
Haselbacher
,
A.
,
2012
, “
Equation of Motion for a Sphere in Non-Uniform Compressible Flows
,”
J. Fluid Mech.
,
699
, pp.
352
375
.10.1017/jfm.2012.109
24.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2008
, “
On the Unsteady Inviscid Force on Cylinders and Spheres in Subcritical Compressible Flow
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1873
), pp.
2161
2175
.10.1098/rsta.2008.0027
25.
Parmar
,
M.
,
Balachandar
,
S.
, and
Haselbacher
,
A.
,
2012
, “
Equation of Motion for a Drop or Bubble in Viscous Compressible Flows
,”
Phys. Fluids
,
24
, p.
056103
.10.1063/1.4719696
26.
Batchelor
,
G.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
27.
Moretti
,
P.
,
2003
, “
Tension in Fluttering Flags
,”
10th International Congress on Sound and Vibration
, Stockholm, Sweden, July 7–10, pp.
7
10
.
28.
Crighton
,
D. G.
and
Oswell
,
J. E.
,
1991
, “
Fluid Loading With Mean Flow. I. Response of an Elastic Plate to Localized Excitation
,”
Philos. Trans. R. Soc. London
, Ser. A,
335
, pp.
557
592
.10.1098/rsta.1991.0060
29.
Briggs
,
R. J.
,
1964
,
Electron-Stream Interaction With Plasmas
,
MIT
,
Cambridge, MA
.
30.
Peake
,
N.
,
2001
, “
Nonlinear Stability of a Fluid-Loaded Elastic Plate With Mean Flow
,”
J. Fluid Mech.
,
434
, pp.
101
118
.10.1017/S0022112001003573
31.
Landahl
,
M. T.
,
1962
, “
On the Stability of a Laminar Incompressible Boundary Layer Over a Flexible Surface
,”
J. Fluid Mech.
,
13
(
4
), pp.
609
632
.10.1017/S002211206200097X
32.
Benjamin
,
T. B.
,
1963
, “
The Threefold Classification of Unstable Disturbances in Flexible Surfaces Bounding Inviscid Flows
,”
J. Fluid Mech.
,
16
(
3
), pp.
436
450
.10.1017/S0022112063000884
33.
Zhang
,
J.
,
Childress
,
S.
,
Libchaber
,
A.
, and
Shelley
,
M.
,
2000
, “
Flexible Filaments in a Flowing Soap Film as a Model for One-Dimensional Flags in a Two-Dimensional Wind
,”
Nature (London)
,
408
(
6814
), pp.
835
839
.10.1038/35048530
34.
Shelley
,
M.
,
Vandenberghe
,
N.
, and
Zhang
,
J.
,
2005
, “
Heavy Flags Undergo Spontaneous Oscillations in Flowing Water
,”
Phys. Rev. Lett.
,
94
, p.
094302
.10.1103/PhysRevLett.94.094302
You do not currently have access to this content.