Under the actions of internal pressure and electric voltage, a spherical dielectric elastomer balloon usually keeps a sphere during its deformation, which has also been assumed in many previous studies. In this article, using linear perturbation analysis, we demonstrate that a spherical dielectric elastomer balloon may bifurcate to a nonspherical shape under certain electromechanical loading conditions. We also show that with a nonspherical shape, the dielectric elastomer balloon may have highly inhomogeneous electric field and stress/stretch distributions, which can lead to the failure of the system. In addition, we conduct stability analysis of the dielectric elastomer balloon in different equilibrium configurations by evaluating its second variation of free energy under arbitrary perturbations. Our analyses indicate that under pressure-control and voltage-control modes, nonspherical deformation of the dielectric elastomer balloon is energetically unstable. However, under charge-control or ideal gas mass-control mode, nonspherical deformation of the balloon is energetically stable.

References

1.
Wang
,
H.
,
Lei
,
M.
, and
Cai
,
S.
,
2013
, “
Viscoelastic Deformation of a Dielectric Elastomer Membrane Subject to Electromechanical Loads
,”
J. Appl. Phys.
,
113
(
21
), p.
213508
.10.1063/1.4807911
2.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Nonlinear Oscillation of a Dielectric Elastomer Balloon
,”
Polym. Int.
,
59
(
3
), pp.
378
383
.10.1002/pi.2767
3.
Moscardo
,
M.
,
Zhao
,
X.
,
Suo
,
Z.
, and
Lapusta
,
Y.
,
2008
, “
On Designing Dielectric Elastomer Actuators
,”
J. Appl. Phys.
,
104
(
9
), p.
093503
.10.1063/1.3000440
4.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031008
.10.1115/1.4005885
5.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.10.1103/PhysRevB.76.134113
6.
Huang
,
J.
,
Li
,
T.
,
Foo
,
C. C.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.10.1063/1.3680591
7.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.10.1016/j.jmps.2012.09.006
8.
Kornbluh
,
R.
,
2004
, “
Technology Application-Dielectric Elastomer Artificial Muscle for Actuation, Sensing, Generation, and Intelligent Structures
,”
Mater. Technol.
,
19
(
4
), pp.
216
223
.
9.
Kwak
,
J. W.
,
Chi
,
H. J.
,
Jung
,
K. M.
,
Koo
,
J. C.
,
Jeon
,
J. W.
,
Lee
,
Y.
,
Ryew
,
Y.
, and
Choi
,
H. R.
,
2005
, “
A Face Robot Actuated With Artificial Muscle Based on Dielectric Elastomer
,”
J. Mech. Sci. Technol.
,
19
(
2
), pp.
578
588
.10.1007/BF02916180
10.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
,
Stanford
,
S.
,
Oh
,
S.
,
Eckerle
,
J.
,
Full
,
R. J.
,
Rosenthal
,
M. A.
, and
Meijer
,
K.
,
2002
, “
Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion
,”
Proc. SPIE
,
4695
, pp.
126
137
.10.1117/12.475157
11.
Palli
,
G.
, and
Berselli
,
G.
,
2013
, “
On the Control of a Dielectric Elastomer Artificial Muscle With Variable Impedance
,”
ASME
Paper No. SMASIS2013-3267. 10.1115/SMASIS2013-3267
12.
Carpi
,
F.
,
Frediani
,
G.
, and
De Rossi
,
D.
,
2011
, “
Opportunities of Hydrostatically Coupled Dielectric Elastomer Actuators for Haptic Interfaces
,”
Proc. SPIE
,
7976
, p.
797618
10.1117/12.880042.
13.
Henann
,
D. L.
,
Chester
,
S. A.
, and
Bertoldi
,
K.
,
2013
, “
Modeling of Dielectric Elastomers: Design of Actuators and Energy Harvesting Devices
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2047
2066
.10.1016/j.jmps.2013.05.003
14.
Pope
,
K.
,
Tews
,
A.
,
Frecker
,
M. I.
,
Mockensturm
,
E.
,
Goulbourne
,
N. C.
, and
Snyder
,
A. J.
,
2004
, “
Dielectric Elastomer Laminates for Active Membrane Pump Applications
,”
Proc. SPIE
,
5385
, pp.
60
67
.10.1117/12.541297
15.
Goulbourne
,
N.
,
Frecker
,
M. I.
,
Mockensturm
,
E. M.
, and
Snyder
,
A. J.
,
2003
, “
Modeling of a Dielectric Elastomer Diaphragm for a Prosthetic Blood Pump
,”
Proc. SPIE
,
5051
, pp.
319
331
.10.1117/12.484388
16.
Goulbourne
,
N. C.
,
Frecker
,
M. I.
, and
Mockensturm
,
E.
,
2004
, “
Electro-Elastic Modeling of a Dielectric Elastomer Diaphragm for a Prosthetic Blood Pump
,”
Proc. SPIE
,
5385
, pp.
122
133
.10.1117/12.539818
17.
Bowers
,
A. E.
,
Rossiter
,
J. M.
,
Walters
,
P. J.
, and
Ieropoulos
,
I. A.
,
2011
, “
Dielectric Elastomer Pump for Artificial Organisms
,”
Proc. SPIE
,
7976
, p.
797629
.10.1117/12.880440
18.
Son
,
S.-I.
,
Pugal
,
D.
,
Hwang
,
T.
,
Choi
,
H. R.
,
Koo
,
J. C.
,
Lee
,
Y.
,
Kim
,
K.
, and
Nam
,
J.-D.
,
2012
, “
Electromechanically Driven Variable-Focus Lens Based on Transparent Dielectric Elastomer
,”
Appl. Opt.
,
51
(
15
), pp.
2987
2996
.10.1364/AO.51.002987
19.
Liang
,
D.
,
Lin
,
Z.-F.
,
Huang
,
C.-C.
, and
Shih
,
W.-P.
,
2014
, “
Tunable Lens Driven by Dielectric Elastomer Actuator With Ionic Electrodes
,”
Micro Nano Lett.
,
9
(
12
), pp.
869
873
.10.1049/mnl.2014.0401
20.
Lau
,
G.-K.
,
La
,
T.-G.
,
Shiau
,
L.-L.
, and
Tan
,
A. W. Y.
,
2014
, “
Challenges of Using Dielectric Elastomer Actuators to Tune Liquid Lens
,”
Proc. SPIE
,
9056
, p.
90561J
.10.1117/12.2046384
21.
Hwang
,
T.
,
Kwon
,
H.-Y.
,
Oh
,
J.-S.
,
Hong
,
J.-P.
,
Hong
,
S.-C.
,
Lee
,
Y.
,
Choi
,
H. R.
,
Kim
,
K. J.
,
Bhuiya
,
M. H.
, and
Nam
,
J.-D.
,
2013
, “
Transparent Actuator Made With Few Layer Graphene Electrode and Dielectric Elastomer, for Variable Focus Lens
,”
Appl. Phys. Lett.
,
103
(
2
), p.
023106
.10.1063/1.4812982
22.
Rudykh
,
S.
, and
Bhattacharya
,
K.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
206
209
.10.1016/j.ijnonlinmec.2011.05.006
23.
Alexander
,
H.
,
1971
, “
Tensile Instability of Initially Spherical Balloons
,”
Int. J. Eng. Sci.
,
9
(
1
), pp.
151
160
.10.1016/0020-7225(71)90017-6
24.
Needleman
,
A.
,
1977
, “
Inflation of Spherical Rubber Balloons
,”
Int. J. Solids Struct.
,
13
(
5
), pp.
409
421
.10.1016/0020-7683(77)90036-1
25.
Haughton
,
D. M.
, and
Ogden
,
R. W.
,
1978
, “
On the Incremental Equations in Non-Linear Elasticity—II. Bifurcation of Pressurized Spherical Shells
,”
J. Mech. Phys. Solids
,
26
(
2
), pp.
111
138
.10.1016/0022-5096(78)90017-0
26.
Chen
,
Y.-C.
, and
Healey
,
T. J.
,
1991
, “
Bifurcation to Pear-Shaped Equilibria of Pressurized Spherical Membranes
,”
Int. J. Non-Linear Mech.
,
26
(
3
), pp.
279
291
.10.1016/0020-7462(91)90058-2
27.
Fu
,
Y.
, and
Xie
,
Y.
,
2014
, “
Stability of Pear-Shaped Configurations Bifurcated From a Pressurized Spherical Balloon
,”
J. Mech. Phys. Solids
,
68
, pp.
33
44
.10.1016/j.jmps.2014.03.007
28.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
29.
Feodos'ev
,
V.
,
1968
, “
On Equilibrium Modes of a Rubber Spherical Shell Under Internal Pressure: PMM Vol. 32, No. 2, 1968, pp. 339–344
,”
J. Appl. Math. Mech.
,
32
(
2
), pp.
335
341
.10.1016/0021-8928(68)90138-X
30.
Shield
,
R. T.
,
1972
, “
On the Stability of Finitely Deformed Elastic Membranes
,”
Z. Angew. Math. Phys.
,
23
(
1
), pp.
16
34
.10.1007/BF01593199
31.
van der Heijden
,
A. M.
,
2009
,
WT Koiter's Elastic Stability of Solids and Structures
,
Cambridge University Press
,
Cambridge, UK
.
32.
Fu
,
Y.
, and
Xie
,
Y.
,
2010
, “
Stability of Localized Bulging in Inflated Membrane Tubes Under Volume Control
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1242
1252
.10.1016/j.ijengsci.2010.08.007
You do not currently have access to this content.