When exposed to an external solvent, a dry polymeric network imbibes the solvent and undergoes large deformation. The resulting aggregate is known as a hydrogel. This swelling process is diffusion driven and thus results in differential swelling during transient swelling. When subjected to external geometrical constraints, such as being rigidly fixed or attachment to a compliant substrate, wrinkles have been shown to appear due to mechanical instabilities. In the case of free swelling, there are no external constraints to induce the instabilities accounting for wrinkling patterns. However, during the transient swelling process, the swelling differential between the gel on the exterior and the interior causes compressive stresses and gives rise to mechanical instabilities. It is also observed that the time dependence of the swelling profile causes the wrinkles to evolve with time. In this work, we investigate this interesting phenomenon of transient wrinkle mode evolution using the finite element and state-space methods. From our simulations and prediction, we find that there is an inverse relation between critical wave number and time, which has earlier been observed in experiments.

References

1.
Yang
,
S.
,
Khare
,
K.
, and
Lin
,
P.-C.
,
2010
, “
Harnessing Surface Wrinkle Patterns in Soft Matter
,”
Adv. Funct. Mater.
,
20
(
16
), pp.
2550
2564
.10.1002/adfm.201000034
2.
DuPont
,
S. J.
, Jr.
,
Cates
,
R. S.
,
Stroot
,
P. G.
, and
Toomey
,
R.
,
2010
, “
Swelling-Induced Instabilities in Microscale, Surface-Confined Poly(N-Isopropylacryamide) Hydrogels
,”
Soft Matter
,
6
(
16
), pp.
3876
3882
.10.1039/c0sm00021c
3.
Tanaka
,
T.
,
Sun
,
S.-T.
,
Hirokawa
,
Y.
,
Katayama
,
S.
,
Kucera
,
J.
,
Hirose
,
Y.
, and
Amiya
,
T.
,
1987
, “
Mechanical Instability of Gels at the Phase Transition
,”
Nature
,
325
(
6107
), pp.
796
798
.10.1038/325796a0
4.
Guvendiren
,
M.
,
Burdick
,
J. A.
, and
Yang
,
S.
,
2010
, “
Kinetic Study of Swelling-Induced Surface Pattern Formation and Ordering in Hydrogel Films With Depth-Wise Crosslinking Gradient
,”
Soft Matter
,
6
(
9
), pp.
2044
2049
.10.1039/b927374c
5.
Peixinho
,
J.
, and
Mukhopadhyay
,
S.
,
2013
, “
Diffusion-Mechanical Instability of a Spherical Gel
,” Rencontre du Non-linéaire (
Meeting of Nonlinear 2015
), Paris, Mar. 18–19, pp.
116
119
.http://nonlineaire.univ-lille1.fr/SNL/media/2012/CR/Peixinho_.pdf
6.
Liu
,
Z. S.
,
Swaddiwudhipong
,
S.
,
Cui
,
F. S.
,
Hong
,
W.
,
Suo
,
Z.
, and
Zhang
,
Y. W.
,
2011
, “
Analytical Solutions of Polymeric Gel Structures Under Buckling and Wrinkle
,”
Int. J. Appl. Mech.
,
3
(
2
), pp.
235
257
.10.1142/S1758825111000968
7.
Zhang
,
Y.
,
Chen
,
L.
,
Swaddiwudhipong
,
S.
, and
Liu
,
Z. S.
,
2014
, “
Buckling Deformation of Annular Plates Describing Natural Forms
,”
Int. J. Struct. Stab. Dyn.
,
14
(
1
), p.
1350054
.10.1142/S0219455413500545
8.
Mora
,
T.
, and
Boudaoud
,
A.
,
2006
, “
Buckling of Swelling Gels
,”
Eur. Phys. J. E
,
20
(
2
), pp.
119
124
.10.1140/epje/i2005-10124-5
9.
Liu
,
Z. S.
,
Hong
,
W.
,
Suo
,
Z.
,
Swaddiwudhipong
,
S.
, and
Zhang
,
Y.
,
2010
, “
Modeling and Simulation of Buckling of Polymeric Membrane Thin Film Gel
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
S60
S64
.10.1016/j.commatsci.2009.12.036
10.
Wu
,
Z.
,
Bouklas
,
N.
, and
Huang
,
R.
,
2013
, “
Swell-Induced Surface Instability of Hydrogel Layers With Material Properties Varying in Thickness Direction
,”
Int. J. Solids Struct.
,
50
(
3–4
), pp.
578
587
.10.1016/j.ijsolstr.2012.10.022
11.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Formation of Creases on the Surfaces of Elastomers and Gels
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111901
.10.1063/1.3211917
12.
Duan
,
Z.
,
Zhang
,
J.
,
An
,
Y.
, and
Jiang
,
H.
,
2013
, “
Simulation of the Transient Behavior of Gels Based on an Analogy Between Diffusion and Heat Transfer
,”
Int. J. Appl. Mech.
,
80
(
4
), p.
041017
.10.1115/1.4007789
13.
Toh
,
W.
,
Liu
,
Z. S.
,
Ng
,
T. Y.
, and
Hong
,
W.
,
2013
, “
Inhomogeneous Large Deformation Kinetics of Polymeric Gels
,”
Int. J. Appl. Mech.
,
5
(
1
), p.
1350001
.10.1142/S1758825113500014
14.
Chester
,
S. A.
,
Di Leo
,
C. V.
, and
Anand
,
L.
,
2014
, “
A Finite Element Implementation of a Coupled Diffusion-Deformation Theory for Elastomeric Gels
,”
Int. J. Solids Struct.
,
52
, pp.
1
18
.10.1016/j.ijsolstr.2014.08.015
15.
Zhang
,
J.
,
Zhao
,
X.
,
Suo
,
Z.
, and
Jiang
,
H.
,
2009
, “
A Finite Element Method for Transient Analysis of Concurrent Large Deformation and Mass Transport in Gels
,”
J. Appl. Phys.
,
105
(
9
), pp.
93522
93529
.10.1063/1.3106628
16.
Wu
,
Z.
,
Meng
,
J.
,
Liu
,
Y.
,
Li
,
H.
, and
Huang
,
R.
,
2014
, “
A State Space Method for Surface Instability of Elastic Layers With Material Properties Varying in Thickness Direction
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081003
.10.1115/1.4027464
17.
Kang
,
M. K.
, and
Huang
,
R.
,
2010
, “
A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints
,”
ASME J. Appl. Mech.
,
77
(
6
), p.
061004
.10.1115/1.4001715
18.
Hong
,
W.
,
Liu
,
Z. S.
, and
Suo
,
Z.
,
2009
, “
Inhomogeneous Swelling of a Gel in Equilibrium With a Solvent and Mechanical Load
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3282
3289
.10.1016/j.ijsolstr.2009.04.022
19.
Toh
,
W.
,
Ng
,
T. Y.
,
Hu
,
J.
, and
Liu
,
Z.
,
2014
, “
Mechanics of Inhomogeneous Large Deformation of Photo-Thermal Sensitive Hydrogels
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4440
4451
.10.1016/j.ijsolstr.2014.09.014
20.
Ding
,
Z.
,
Liu
,
Z. S.
,
Hu
,
J.
,
Swaddiwudhipong
,
S.
, and
Yang
,
Z.
,
2013
, “
Inhomogeneous Large Deformation Study of Temperature-Sensitive Hydrogel
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2610
2619
.10.1016/j.ijsolstr.2013.04.011
21.
Marcombe
,
R.
,
Cai
,
S.
,
Hong
,
W.
,
Zhao
,
X.
,
Lapusta
,
Y.
, and
Suo
,
Z.
,
2010
, “
A Theory of Constrained Swelling of a pH-Sensitive Hydrogel
,”
Soft Matter
,
6
(
4
), pp.
784
793
.10.1039/b917211d
22.
Bouklas
,
N.
, and
Huang
,
R.
,
2012
, “
Swelling Kinetics of Polymer Gels: Comparison of Linear and Nonlinear Theories
,”
Soft Matter
,
8
(
31
), pp.
8194
8203
.10.1039/c2sm25467k
23.
Lee
,
D.
,
Triantafyllidis
,
N.
,
Barber
,
J. R.
, and
Thouless
,
M. D.
,
2008
, “
Surface Instability of an Elastic Half Space With Material Properties Varying With Depth
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
858
868
.10.1016/j.jmps.2007.06.010
24.
Weiss
,
F.
,
Cai
,
S.
,
Hu
,
Y.
,
Kyoo Kang
,
M.
,
Huang
,
R.
, and
Suo
,
Z.
,
2013
, “
Creases and Wrinkles on the Surface of a Swollen Gel
,”
J. Appl. Phys.
,
114
(
7
), p.
073507
.10.1063/1.4818943
25.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2011
, “
From Wrinkles to Creases in Elastomers: The Instability and Imperfection-Sensitivity of Wrinkling
,”
Proc. R. Soc. A
,
468
(
2137
), pp.
94
115
.10.1098/rspa.2011.0384
26.
Wong
,
W. H.
,
Guo
,
T. F.
,
Zhang
,
Y. W.
, and
Cheng
,
L.
,
2010
, “
Surface Instability Maps for Soft Materials
,”
Soft Matter
,
6
(
22
), pp.
5743
5750
.10.1039/c0sm00351d
27.
Hohlfeld
,
E.
, and
Mahadevan
,
L.
,
2012
, “
Scale and Nature of Sulcification Patterns
,”
Phys. Rev. Lett.
,
109
(
2
), p.
025701
.10.1103/PhysRevLett.109.025701
28.
Hohlfeld
,
E.
, and
Mahadevan
,
L.
,
2011
, “
Unfolding the Sulcus
,”
Phys. Rev. Lett.
,
106
(
10
), p.
105702
.10.1103/PhysRevLett.106.105702
You do not currently have access to this content.