Pure bending experiments on prismatic bars of square cross section composed of reticulated polymer foam exhibit deformation behavior not captured by classical elasticity theory. Perhaps the clearest example of this is the observed sigmoidal deformation of the bars' lateral surfaces, which are predicted by classical elasticity theory to tilt but remain planar upon pure moment application. Such foams have a non-negligible length scale compared to the bars' cross-sectional dimensions, whereas classical elasticity theory contains no inherent length scale. All these facts raise the intriguing question: is there a richer, physically sensible, yet still continuum and relatively simple elasticity theory capable of modeling the observed phenomenon in these materials? This paper reports our exploration of the hypothesis that Cosserat elasticity can. We employ the principle of minimum potential energy for homogeneous isotropic Cosserat linear elastic material in which the microrotation vector is taken to be independent of the macrorotation vector (as prior experiments indicate that it should be in general to model such materials) to obtain an approximate three-dimensional solution to pure bending of a prismatic bar having a square cross section. We show that this solution, and hence Cosserat elasticity, captures the experimentally observed nonclassical deformation feature, both qualitatively and quantitatively, for reasonable values of the Cosserat moduli. A further interesting conclusion is that a single experiment—the pure bending one—suffices to reveal directly, via the observation of surface deformation, the presence of nonclassical elastic effects describable by Cosserat elasticity.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids
, 2nd ed.,
Pergamon/Cambridge
,
Oxford, UK
.
2.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Theorie des Corps Deformables
,
Hermann et Fils
,
Paris
.
3.
Eringen
,
A. C.
,
1968
, “
Theory of Micropolar Elasticity
,”
Fracture
, Vol.
1
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
621
729
.
4.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids Struct.
,
48
(18), pp.
2496
2510
.10.1016/j.ijsolstr.2011.05.002
5.
Koiter
,
W. T.
,
1964
, “
Couple-Stresses in the Theory of Elasticity, Parts I and II
,”
Proc. K. Ned. Akad. Wet.
,
67
(
1
), pp.
17
44
.
6.
Lakes
,
R. S.
,
1986
, “
Experimental Microelasticity of Two Porous Solids
,”
Int. J. Solids Struct.
,
22
(1), pp.
55
63
.10.1016/0020-7683(86)90103-4
7.
Anderson
,
W. B.
, and
Lakes
,
R. S.
,
1994
, “
Size Effects Due to Cosserat Elasticity and Surface Damage in Closed-Cell Polymethacrylimide Foam
,”
J. Mater. Sci.
,
29
(24), pp.
6413
6419
.10.1007/BF00353997
8.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2012
, “
Elasto-Static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
(1), pp.
156
171
.10.1016/j.jmps.2011.09.012
9.
Adomeit
,
G.
,
1967
, “
Determination of Elastic Constants of a Structured Material
,” Mechanics of Generalized Continua,
Proceedings of the IUTAM Symposium
, Freudenstadt/Stuttgart, Aug. 28–31/Sept. 1–2,
E.
Kröner
, ed., Springer, Berlin, pp.
80
82
.
10.
Bigoni
,
D.
, and
Drugan
,
W. J.
,
2007
, “
Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials
,”
ASME J. Appl. Mech.
,
74
(4), pp.
741
753
.10.1115/1.2711225
11.
Lakes
,
R. S.
,
1995
, “
On the Torsional Properties of Single Osteons
,”
J. Biomech.
,
28
(11), pp.
1409
1410
.10.1016/0021-9290(95)00057-O
12.
Gauthier
,
R. D.
, and
Jahsman
,
W. E.
,
1975
, “
A Quest for Micropolar Elastic Constants
,”
ASME J. Appl. Mech.
,
42
(2), pp.
369
374
.10.1115/1.3423583
13.
Mora
,
R.
, and
Waas
,
A. M.
,
2000
, “
Measurement of the Cosserat Constant of Circular Cell Polycarbonate Honeycomb
,”
Philos. Mag. A
,
80
(7), pp.
1699
1713
.10.1080/01418610008212145
14.
Sikon
,
M.
,
2009
, “
Theory and Experimental Verification of Thermal Stresses in Cosserat Medium
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
57
(
2
), pp.
177
180
.10.2478/v10175-010-0119-y
15.
Krishna Reddy
,
G. V.
, and
Venkatasubramanian
,
N. K.
,
1978
, “
On the Flexural Rigidity of a Micropolar Elastic Circular Cylinder
,”
ASME J. Appl. Mech.
,
45
(2), pp.
429
431
.10.1115/1.3424317
16.
Park
,
H. C.
, and
Lakes
,
R. S.
,
1987
, “
Torsion of a Micropolar Elastic Prism of Square Cross Section
,”
Int. J. Solids, Struct.
,
23
(4), pp.
485
503
.10.1016/0020-7683(87)90013-8
17.
Park
,
H. C.
, and
Lakes
,
R. S.
,
1986
, “
Cosserat Micromechanics of Human Bone: Strain Redistribution by a Hydration-Sensitive Constituent
,”
J. Biomech.
,
19
(5), pp.
385
397
.10.1016/0021-9290(86)90015-1
18.
Lakes
,
R. S.
,
Gorman
,
D.
, and
Bonfield
,
W.
,
1985
, “
Holographic Screening Method for Microelastic Solids
,”
J. Mater. Sci.
,
20
(8), pp.
2882
2888
.10.1007/BF00553052
19.
Anderson
,
W. B.
,
Lakes
,
R. S.
, and
Smith
,
M. C.
,
1995
, “
Holographic Evaluation of Warp in the Torsion of a Bar of Cellular Solid
,”
Cell. Polym.
,
14
, pp.
1
13
.
20.
Iesan
,
D.
,
1971
, “
On Saint Venant's Problem in Micropolar Elasticity
,”
Int. J. Eng. Sci.
,
9
(10), pp.
879
888
.10.1016/0020-7225(71)90021-8
21.
Iesan
,
D.
,
1971
, “
Bending of Micropolar Elastic Beams by Terminal Couples
,”
An. St. Univ. Iasi Math.
,
17
, pp.
483
490
.
22.
Reissner
,
E.
,
1968
, “
On St. Venant Flexure Including Couple Stresses
,”
PMM
,
32
(
5
), pp.
923
929
.
23.
Park
,
S. K.
, and
Gao
,
X. L.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
16
(
11
), pp.
2355
2359
.10.1088/0960-1317/16/11/015
24.
Jemielita
,
G.
,
1984
, “
Bending of a Micropolar Rectangular Prism. I
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
32
(
11
), pp.
625
632
.
25.
Mindlin
,
R. D.
,
1965
, “
Stress Functions for a Cosserat Continuum
,”
Int. J. Solids Struct.
,
1
(3), pp.
265
271
.10.1016/0020-7683(65)90033-8
26.
Wang
,
Y. C.
,
Lakes
,
R. S.
, and
Butenhoff
,
A.
,
2001
, “
Influence of Cell Size on Re-Entrant Transformation of Negative Poisson's Ratio Reticulated Polyurethane Foams
,”
Cell. Polym.
,
20
(
6
), pp.
373
385
.
27.
Tauchert
,
T.
,
1970
, “
A Lattice Theory for Representation of Thermoelastic Composite Materials
,”
Recent Adv. Eng. Sci.
,
5
(
1
), pp.
325
345
.
28.
Ilcewicz
,
L.
,
Kennedy
,
T. C.
, and
Shaar
,
C.
,
1985
, “
Experimental Application of a Generalized Continuum Model to Nondestructive Testing
,”
J. Mater. Sci. Lett.
,
4
(4), pp.
434
438
.10.1007/BF00719738
29.
Drugan
,
W. J.
,
2003
, “
Two Exact Micromechanics-Based Nonlocal Constitutive Equations for Random Linear Elastic Composite Materials
,”
J. Mech. Phys. Solids
,
51
(9), pp.
1745
1772
.10.1016/S0022-5096(03)00049-8
30.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocations and Surface Waves
,”
J. Appl. Phys.
,
54
(9), pp.
4703
4710
.10.1063/1.332803
31.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
,
2003
, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
(
3–5
), pp.
304
312
.10.1016/S0020-7225(02)00210-0
You do not currently have access to this content.